
Engineering Differential Equations

Examples of Forced Motion with Sinusoidal Forcing

1. (Generic Example). Consider a mass-spring system with mass m = 1 kg, spring constant
k = 5 N/m, damping constant c = 2 N·sec/m, and external force F (t) = 17 cos(2t) N.

Suppose the mass starts from a position 1 m to the right of the equilibrium position with a
velocity of 4 m/sec. Find x(t), the position of the mass at time t.

The model d.e. mx′′+cx′+kx = F (t) becomes x′′+2x′+5x = 17 cos(2t). To find xc, we solve

the characteristic equation: r2+2r+5 = 0 ⇒ r =
−2 ±

√

22 − 4(1)(5)

2(1)
= −1 ± 2i. Therefore,

xc = c1e
−t cos(2t) + c2e

−t sin(2t). Since the nonhomogeneous term is 17 cos(2t), we guess

xp = A cos(2t) + B sin(2t). Substituting into the d.e. and solving for A and B, we find that
xp = cos(2t)+4 sin(2t). Thus, x = xc +xp = c1e

−t cos(2t)+ c2e
−t sin(2t)+cos(2t)+4 sin(2t).

Using the initial conditions x(0) = 1 and x′(0) = 4, we find that c1 = 0 and c2 = −2, so
x = −2e−t sin(2t)

︸ ︷︷ ︸

transient part of solution

+ cos(2t) + 4 sin(2t)
︸ ︷︷ ︸

steady−state part of solution

.

The transient part of the solution approaches 0 as t → ∞. This part of the solution comes

from the complementary solution xc. The steady-state part of the solution is the particular
solution xp. This part of the solution oscillates and does not approaches 0 as t → ∞.

2. (Pure Resonance) Consider a mass-spring system with mass m = 1 kg, spring constant k = 1

N/m, damping constant c = 0 N·sec/m, and external force F (t) = 2 cos(t) N. Suppose the
mass starts from rest at the equilibrium position. Find x(t), the position of the mass at time

t.

The model d.e. mx′′ + cx′ + kx = F (t) becomes x′′ + x = 2 cos(t). To find xc we solve
the characteristic equation: r2 + 1 = 0 ⇒ r = ±i ⇒ xc = c1 cos(t) + c2 sin(t). Since the

nonhomogeneous term is 2 cos(t), we guess xp = A cos(t)+B sin(t). However, both these terms
appear in xc, so we must modify our guess: xp = At cos(t) + Bt sin(t). Substituting into the
d.e. and solving for A and B, we find that xp = t sin(t). Thus, x = c1 cos(t)+c2 sin(t)+t sin(t).

Using the initial conditions x(0) = 0, x′(0) = 0, we find that c1 = 0 and c2 = 0, so x = t sin(t).
Notice that the amplitude of the oscillations → ∞ as t → ∞. This is an example of pure

resonance. Pure resonance occurs in an undamped system when the frequency of the forcing
term exactly matches the natural frequency of the system ω0 =

√

k/m.
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3. (Resonance) Consider a mass-spring system with mass m = 1 kg, spring constant k = 1 N/m,

damping constant c = 0.1 N·sec/m, and external force F (t) = cos(ωt) N, where

ω =

√

k

m
−

c2

2m2
≈ 0.9975 sec−1. Find the steady-state solution.

The model d.e. mx′′ + cx′ + kx = F (t) becomes x′′ + 0.1x′ + x = cos(ωt). Since there is

damping in the system, the steady-state solution is the particular solution xp. Since the
nonhomogeneous term is cos(ωt), we guess xp = A cos(ωt) + B sin(ωt). The homogeneous

solution will not contain terms of this form because there is damping, so there is no need to
multiply our guess by t. Substituting into the d.e. and solving for A and B, we find that
xp ≈ 10 sin(ωt) + 0.5 cos(ωt). Thus, the amplitude of the steady-state solution is approxi-

mately 10, which is 10 times greater than the amplitude of the forcing term F (t) = cos(ωt).
This is an example of resonance.

4. (Beats) Consider a mass-spring system with mass m = 1 kg, spring constant k = 1 N/m,

damping constant c = 0 N·sec/m, and external force F (t) = 0.44 cos(1.2t) N. Suppose the
mass starts from rest at the equilibrium position. Find x(t), the position of the mass at time

t.

The model d.e. mx′′ + cx′ + kx = F (t) becomes x′′ + x = 0.44 cos(1.2t). To find xc, we solve
the characteristic equation r2 + 1 = 0, giving r = ±i. Therefore, xc = c1 cos(t) + c2 sin(t).

Since the nonhomogeneous term is 0.44 cos(1.2t), we guess xp = A cos(1.2t) + B sin(1.2t).
Substituting into the d.e. and solving for A and B, we find that xp = − cos(1.2t). Thus,

x = c1 cos(t) + c2 sin(t) − cos(1.2t). Using the initial conditions x(0) = 0, x′(0) = 0, we
find that c1 = 1 and c2 = 0, so x = cos(t) − cos(1.2t). Using the trigonometric identity
cos(α − β) − cos(α + β) = 2 sin(α) sin(β) with α = 1.1t and β = 0.1t, we can rewrite x as

x = [2 sin(0.1t)] sin(1.1t). This can be thought of as a sine function with angular frequency 1.1
and time-dependent amplitude 2 sin(0.1t). The amplitude term is periodic, but its frequency

is much smaller than that of the “carrier wave” sin(1.1t). Thus, the amplitude oscillates
slowly between 0 and 2. This phenomenon of slowly oscillating amplitude is known as beats.
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