MATH.2360 Engineering Differential Equations

Homework Assignment for Section 4.3 (Numerical Methods for Systems)

Name:

Consider the system

$$
\left\{\begin{array}{l}
x^{\prime}=-t x+y \\
y^{\prime}=x+\sin (t)
\end{array}\right.
$$

with initial conditions $x(0)=1, y(0)=-2$.

1. Use the Runge-Kutta Method to generate an approximate solution to the initial value problem on the interval $0 \leq t \leq 1$ using $n=2$ subintervals.
2. Use the Runge-Kutta Method to generate an approximate solution to the initial value problem on the interval $0 \leq t \leq 1$ using $n=10$ subintervals.
3. Fill in the following table.

	R-K Method with $n=2$	R-K Method with $n=10$
$x(0.5)$		
$x(1)$		
$y(0.5)$		
$y(1)$		

