MATH.2360 Engineering Differential Equations Homework Assignment for Section 4.3 (Numerical Methods for Systems)

Name: _____

Consider the system

$$\begin{cases} x' = -tx + y \\ y' = x + \sin(t) \end{cases}$$

with initial conditions x(0) = 1, y(0) = -2.

- 1. Use the Runge-Kutta Method to generate an approximate solution to the initial value problem on the interval $0 \le t \le 1$ using n = 2 subintervals.
- 2. Use the Runge-Kutta Method to generate an approximate solution to the initial value problem on the interval $0 \le t \le 1$ using n = 10 subintervals.
- 3. Fill in the following table.

	R-K Method with $n = 2$	R-K Method with $n = 10$
x(0.5)		
x(1)		
y(0.5)		
y(1)		