The Isochron Method for Determining the Age of a Rock

Background Information

Knowledge of radioactive decay processes provides one way to estimate the age of rocks and fossils containing a radioactive isotope. The basic idea is to measure the amount of radioactive substance now in the rock and to subtract that quantity from the amount originally present, giving the amount of substance that has decayed since the rock was formed. Knowing how long it would take this amount of substance to decay, one can deduce the age of the rock. One problem with this method is that we need to know how much of the substance was originally present. The isochron method avoids this problem.

Certain rocks contain more than one type of mineral. Consider a rock containing five different minerals, each of which contains isotopes of the elements rubidium (Rb) and strontium (Sr). Rubidium 87 (⁸⁷Rb) is radioactive with a half-life of 47 billion years, decaying directly to strontium 87 (⁸⁷Sr). Three other isotopes of strontium are also present in the rock: ⁸⁸Sr, ⁸⁶Sr, and ⁸⁴Sr; none of these isotopes is produced by radioactive decay.

Suppose we now represent each of the five minerals present in the rock by a data point on a graph. The first coordinate of each data point is the ratio of the original amount of ⁸⁷Rb to the original amount of ⁸⁶Sr; the second coordinate is the ratio of the original amount of ⁸⁷Sr to the original amount of ⁸⁶Sr.

Since the isotopes of strontium are chemically identical, the ratio of ⁸⁷Sr to ⁸⁶Sr will be the same for each mineral when the rock is formed. (The ratio ⁸⁷Sr / ⁸⁶Sr in each mineral just equals the value of this ratio in the region where the rock was formed.) Therefore, the five data points lie on a horizontal line at time 0, the time at which the rock was formed.

As time goes on, the amount of 87 Rb in each mineral decreases because of radioactive decay, and the amount of 87 Sr increases. (The amount of 86 Sr remains constant.) The more 87 Rb a mineral starts out with, the more 87 Sr it will contain at later times. Therefore, if we plot 87 Sr / 86 Sr vs. 87 Rb / 86 Sr for each mineral at time t > 0, the points will no longer lie on a horizontal line. It turns out that these points lie on a line with positive slope. The slope is related to the amount of time t that has elapsed since the rock was formed.

Your tasks are to explain why data points must lie on a straight line even for t > 0 and to compute the slope of this line in terms of t and the half-life of ⁸⁷Rb.

Problem Formulation

Let t denote time (in billions of years); let r_1 denote the amount (in moles) of ⁸⁷Rb in mineral 1 at time t; let s_1 denote the amount (in moles) of ⁸⁶Sr in mineral 1 at time t; let t_2 denote the amount (in moles) of ⁸⁶Rb in mineral 2 at time t; etc. Let t_3 denote the half-life of ⁸⁷Rb.

- 1. Find a formula for r_1 in terms of t, τ , and r_{10} , the amount of ⁸⁷Rb in mineral 1 at time 0. Do the same for r_2 , r_3 , r_4 , and r_5 .
- 2. Find a formula for s_1 in terms of t, τ , s_{10} , and r_{10} . Do the same for s_2 , s_3 , s_4 , and s_5 .
- 3. Show that the points $(r_1/u_1, s_1/u_1)$, $(r_2/u_2, s_2/u_2)$, ... $(r_5/u_5, s_5/u_5)$ lie on a straight line, and find the slope of this line in terms of t and τ .

Reference

Miller, Kenneth R. (1984). "Scientific Creationism Versus Evolution: The Mislabled Debate," in *Science and Creationism*, Ashley Montagu, ed., Oxford University Press, 18 - 63.