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ABSTRACT  
The dynamic behavior of offshore wind turbines decides the design of 

several components, such as bearings, gear boxes, foundation platform 

and tower. In this paper, an analytical rotordynamic model of offshore 

wind turbine is developed and effects of several parameters, such as 

rotor blade size, rotational speed, distribution of mass imbalance, wind 

loading, wave loading, current speeds, and location of rotor-nacelle 

assembly are investigated on the dynamic behavior (response and 

stability) of an offshore wind turbine. It is particularly important to 

determine the rotor response for minimizing structural resonance and 

corresponding failure of wind turbine components. The dynamic 

response prediction is also desirable to address the fatigue design of 

wind turbine components. The rotordynamic model of the wind 

turbines is expressed as partial differential equations, with time-

dependent boundary conditions. These equations of motion are 

integrated with respect to time for a simple case of rotor imbalance to 

determine the closed-form solutions of the rotor response and its 

resonance frequencies, in the absence of wind or wave loadings. The 

effect of wave and wind loadings is described in the governing 

equations of motion. The predictions developed through the analytical 

model for the wind turbines free vibrations are compared with finite 

element modeling of the wind turbines. The results are compared and 

the relative merit of using either analytical or finite element modeling is 

discussed. 
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tower; rotor-nacelle.  

 

NOMENCLATURE  
 

� Mass density of the tower 

�             Tower outside diameter 

� Cross-sectional area of the tower 

� Young’s Modulus of the tower  

� Second moment of area 

� Height of the tower 

ℎ Water depth 

� Vertical coordinate measured from tower base 

	 Transverse displacement coordinate 


 Time 

� Mass of the nacelle 

� Combined mass of the rotor blades 

 Rotational speed of the rotor 

� Eigenvalue of the rotor-nacelle-tower assembly in units of 

Radians per Second 

�� Tower characteristic number 

�� Eigenvalue of the assembly in units of Hertz 

� Rotor blades effective eccentricity 

 

 

INTRODUCTION 

Offshore wind turbines are an important part of quest for energy 

resources, as the renewable energy takes on added value in view of 

depleting resources from onshore and offshore locations around the 

world. Offshore wind turbines are a relatively new concept in 

renewable energy. The technical challenge for their design and analysis 

stems from the effect of high winds, wave and current loadings. The 

main reason for the rapid growth and development of offshore wind 

turbines is relative abundance of winds in the offshore regions, social 

and cultural issues related to site obstructions, and noise levels which 

can be tolerated offshore as compared to onshore. 

The offshore wind turbines are currently being designed and 

constructed for the following configurations: (1) Monopile; (2) Tripod; 

and (3) Jacket. These terms refer to the type of supporting offshore 

platform structure in a particular environment. 

In the past two decades, finite element analysis (FEA) has gained 

immense popularity due to its power to model complex engineering 

problems, and developing powerful solutions to engineering designs all 

around the world, which is not just limited to oil, gas and renewable 

energy industry. Commercially, several different leading finite element 

softwares are available, with advanced user interface and fully built-in 

nonlinear, three-dimensional capabilities which are utilized to solve 

sophisticated engineering problems. 

In the design process of offshore and onshore wind turbines, several 

finite element softwares are used, either independently, or sometimes in 
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conjunction with each other to provide design solutions to the 

manufacturers and designers all around the world. Several leading 

softwares include FAST, ADAMS, AeroDYN, Abaqus Standard, 

ANSYS, ALGOR and many other softwares. 

While finite element softwares are indispensable tools for the detailed 

solution of all the engineering problems in today’s world, an engineer 

still needs to be familiar with the basic theory and standard analytical 

models to have a better judgment of the outputs from a software 

program. This paper provides a basic dynamic analytical model of a 

wind turbine with the governing partial differential equations of motion 

and their solution for a simple case. The structure of the governing 

equations of motion will show the engineer the effect of different 

physical parameters on the response and characteristics of a wind 

turbine. 

The model is developed for transverse vibrations of a wind turbine, and 

considers the effect of rotor imbalance only. The gyroscopic effects are 

not considered.  

The framework of governing equations of motion presented in this 

paper highlights how the wave, wind and current loading can be 

incorporated to predict the time response of a wind turbine under 

offshore conditions. 

 

LITERATURE REVIEW 
Onshore and offshore wind turbine design and analysis is performed in 

the industry mostly using advanced finite element based softwares. The 

mechanical modeling of wind turbines in the form of governing 

equations of motion (rotordynamic analysis) is not available in the 

public domain. The only information available in this connection is the 

analysis performed using finite element software packages on specific 

projects or hypothetical cases. The generator modeling (electrical 

aspects such as power, voltage and current) is available in public 

domain. Correspondingly, there is generally a lack of physical 

understanding of physical principles and parameter effects on wind 

turbine dynamic response. 

Lavassas et.al. (2003) outline 

 the modeling and simulation of a 1 MW offshore wind turbine using 

advanced finite element modeling tools. The tower is 44,000 m in 

height, with a variable cross-section tower. This is a three-bladed 

cantilevered wind turbine. The structural response of the wind turbine 

is investigated for the design of the wind turbine. The wind turbine is 

analyzed for gravity, seismic and wind loading. It should be noticed 

that this is an example of an onshore wind turbine, but illustrates the 

design approach. 

Long and Moe describe the modeling and analysis of two different 

wind turbine configurations in offshore conditions. The model is 

simulated with a jacket structure supporting the tower, rotor and 

nacelle. The advanced finite element modeling tools are used for full 

three-dimensional modeling of the entire assembly and to simulate the 

wave and wind loadings on the structure. 

 

 

MATHEMATICAL MODEL 
(a) Equation of Motion 

The model of a wind turbine tower with the coordinate systems used to 

describe the dynamics is shown in  

Fig. 1: 

 

 

 

 

 

 

 

 

 

 
 

    

Fig. 1: Wind turbine model 

 

 

The coordinate system fixed to the ground at the tower base is OXY, 

whereas another fixed coordinate system (O'X'Y') is fixed at the static 

position of the nacelle. Three blades are shown for representative 

purposes only.  

 

The governing partial differential equation of motion for the transverse 

vibration of the tower is expressed as (Williams, 1996): 

 

�� ���
��� = − ��

��� ��� ���
���� + �(�, 
)                    (1) 

 

The geometric boundary conditions of the model are as follows: 

 

η(y,t) 
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	(0, 
) = 0                       (2)

   

 
��(",�)

�� = 0                       (3) 

 

These are the conditions imposed assuming the fixed base of the tower. 

 

The natural boundary conditions of the model are expressed as follows: 

 

   
�

�� ��� ��
��� = 0                    (4) 

  

 

(� + �) ���
��� = �

�� ��� ���
���� + ��#cos (
)               (5) 

 

The natural boundary conditions are applicable at y=l (location of 

tower nacelle). 

 

The effect of imbalance is to impose a time-dependent boundary 

condition at the top of the tower, through harmonic excitation. 

  

(b) Eigenvalue Characteristic Equation 

The characteristic equation for the tower-nacelle-rotor assembly is 

given by the following equation: 

 

−(� + �)( � )*
+,� (-./(�01-ℎ(� − 01-(�-./ℎ(�) + ��(1 +

01-(�01-ℎ(�) = 0                  (6) 

 

This characteristic equation applies for βi, where i=1,2,3,…..The roots 

of this nonlinear equation yield the values of βi, which leads to the 

eigenvalues of the system, for given system parameters, such as mass 

of rotor and nacelle, tower cross-section and height. 

 

The parameter ‘β’ is defined from the following equation: 

 

�� = (� #3)*
+,                            (7) 

 

The eigenvalues ωi are the mode frequencies of the system expressed in 

units of radians per seconds. From ωi, the mode frequencies can be 

calculated in the units of cycles per second (Hz) as follows: 

 

 

�� = 45
#6                            (8) 

 

 

(c) Mode Shapes 

The mode shape coefficients ratios for various modes are calculated 

using the following equation: 

 
78
98

= − :�;<8=>:�;?<8=
7@:<8=>7@:?<8=                     (9) 

 

The mode shapes for the rotor-tower-nacelle assembly are calculated 

from the following equation: 

 

 

A;(�) = B;[78
98

(01-(;� − 01-ℎ(;�) + (-./(;� − -./ℎ(;�)]      (10) 

 

 

(d) Tower Response 

The rotor-tower-nacelle assembly space-time response solution is given 

by the following equation: 

 

	(�, 
) = EFG�
H cos(
) [(-./(;� + -./ℎ(;�)(cos (;� − 01-ℎ(;�) −

(01-(;� + 01-ℎ(;�)(-./(;� − -./ℎ(;�)]               (11) 

 

The denominator of the response function in the previous equation is 

defined as: 

 

∆= −2K(� + �)#L(01-M�-./ℎM� − -./M�01-ℎM�) − 2��MN(1 +
01-M�01-ℎM�)                 (12) 

 

 

M = 3 G
OP

                 (13) 

 

�� = 3 )*
+,                (14) 

 

This equation is the same as the characteristic equation, except that the 

eigenvalues are replaced by the rotor speed, which causes rotating 

imbalance vibrations to occur at the same frequency as the rotor speed 

(synchronous vibration). Therefore, if the rotor speed coincides with 

any eigenvalues, the denominator becomes zero, and the resonance 

occurs. 

 

Based on above analysis, the wind turbine designer is most concerned 

with designing the rotor-nacelle-tower assembly in such a way that the 

rotor speed is significantly different from the first eigenvalue of the 

assembly. In most cases, the first mode is the critical mode, because it 

typically ranges between 15 cpm to 30 cpm, which is the speed range in 

which most commercial wind turbines operate. 

 

The rotordynamic boundary condition is derived by analyzing the rotor-

nacelle mass in the tower top fixed coordinate system. This is rotating 

imbalance condition, which is derived in detail for dynamics of 

continuous systems (Williams, 1996 and Thomson, 1992). 

 

(e) Effect of Wave and Winds 

The effect of waves and winds can be accounted for by introducing the 

resulting force due to wave and wind by a space-time dependent 

function in the equation of motion as follows: 

 

�� ���
��� = − ��

��� ��� ���
���� + �(�, 
)                  (1) 

 

The wave and wind resultant forces can be modeled as one dimensional 

force, even though in practice they are function of more than merely the 

tower height coordinate, y. Nevertheless, this approximation is still 

useful to obtain some analytical solutions, if sufficiently simplified 

models of the wave and wind loading are introduced. 

 

The procedure for obtaining the eigenvalues and eigenvectors is the 

same. However, the response will now be a superposition of the effects 

of the rotating imbalance and the distributed forcing function, f(y,t). 

For offshore wind turbines, the forcing function f(y,t) in general, will 

be a piecewise function, since the wind acts over a certain height at 

which the wave loads do not act. Similarly, the waves act below a 
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certain height, at which the winds do not act.  

 

For modeling an onshore wind turbine, the force f(y,t) will represent 

only the wind loading effects, and not the wave loads, since the 

structure is not installed under water and hence there are external 

loadings due to wind only. 

The complete response solution will be a superposition of the piecewise 

forcing function and the rotating imbalance. 

As an example, the wind loading can be modeled as constant across the 

tower height, or it can also be modeled as varying linearly across the 

tower height. 

In the former case, the function f(y,t) is simply: 

 

�(�, 
) = � 

In the later case (linear variation), the function f(y,t) is given as: 

 

�(�, 
) = �(� − ℎ)
� − ℎ  

Note that this assumes that the wind velocity is steady and independent 

of time. However, the wind velocity can also be assumed as a function 

of time, in which case: 

 

�(�, 
) = �Q(
) 

 

�(�, 
) = �(� − ℎ)
� − ℎ Q(
) 

 

This part of the governing differential equation can be solved in the 

same way as the first part, namely, the separation of variables. 

 

For the case of constant, steady wind profile, the solution is simply: 

 

	(�, 
) = �R(
# + 
 + �") 

 

For the case of linearly varying, steady wind profile, the solution is 

simply: 

 

	(�, 
) = �R(� − ℎ)(
# + 
 + �@) 

 

This solution is added to the other part of particular solution (equation 

(11)) to obtain the complete solution.  

 

 

RESULTS OF MATHEMATICAL MODEL 
(a) Model Parameters 

The model parameters for the wind turbine model are described as 

follows: 

Young’s Modulus = E = 30 MPsi (typical steel grade) 

Tower outside diameter = 15 ft. 

Tower thickness = 3.75 in. 

Tower height = 300 ft. 

Nacelle mass = M= 200,000 kg 

Rotor blades mass (total blade mass) = m = 50000 kg 

Rotor imbalance (eccentricity) = e = 2 in. 

Rotational speed = Ω = 20 revolutions per minute (rpm) 

 

The first eigenvalue is 0.34 Hz (22.4 cpm), the second eigenvalue is 

2.72 Hz (162.5 cpm), while the third eigenvalue is 8.1 Hz (483 cpm). 

Of particular importance is the first eigenvalue, which typically lies in 

the operating speed range of most of the commercial wind turbines 

(about 15 cpm-30 cpm). This necessitates introducing damping in the 

rotor-nacelle assembly and stiffening the structure through design 

modifications to ensure that the first eigenvalue is out of the speed 

range in order to avoid resonance of the wind turbine. 

 

With these parameters, the solution of the governing equations of the 

mathematical model is described by the following graphs. 

 

 
Fig. 2: Time Response at middle and top of tower 

 

 

Fig. 2 shows the time response at the top (nacelle) and mid-span tower 

locations. The solutions show that the time responses are periodic, 

harmonic, with the period equal to the inverse of the rotational speed 

(in rad/s). This response is purely due to rotational imbalance in the 

system. The solution also shows that the top tower response is several 

times higher than the mid-span response, and that both locations show 

the responses to be in –phase with each other. 

 

 
Fig. 3: Amplitude response of the tower as a function of rotational 

speed 

 

Fig. 3 shows the frequency response of the amplitude of wind turbine 

vibrations at the tower nacelle location. This is a plot of equation (11) 

(the amplitude term).The diagram shows a typical resonance location, 

which for the given parameters chosen is about 22.4 rpm. This shows 

the significance of damping mechanisms (not included in the model) to 

minimize and control the vibration amplitudes near the resonance, and 

selecting an operating speed significantly away from the resonance. 
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Fig. 4: Tower mode shapes 

 

 

Fig. 4 shows the first three modes of vibrations of the tower. This is the 

plot of equation (10) for the three modes. 

 

(b) Effect of varying model parameters 

The effects of model variation can be easily predicted using the 

analytical model. The following parameter sensitivity cases are 

considered: 

 

1. Rotor-nacelle mass 

2. Tower height 

3. Tower diameter 

The sensitivity cases are considered such that only one parameter is 

varied while the others are considered fixed. The effects of these 

parameters can be described as follows: 

The rotor-nacelle mass corresponds to the inertia of the wind turbine. 

The higher the inertia is the smaller is the natural frequency of the 

system and vice versa. The tower height and tower diameter correspond 

to the flexibility of the wind turbine. The higher the tower height is, the 

more flexible the tower is and hence the lower the natural frequencies 

will be. On the other hand, the tower diameter corresponds with the 

stiffness of the wind turbine. With larger diameter, more stiff the wind 

turbine will be, and hence the natural frequencies will be higher. In this 

context, the tower height and diameter can be considered to contribute 

oppositely to the overall stiffness of the wind turbine, and hence to the 

natural frequencies of the system. 

 

The numerical results validate the above conclusions. For illustration, 

with a fixed tower diameter of 15 ft and combined rotor-nacelle mass 

of 250,000 kg (550 kips), the sensitivity of the first three modes of the 

wind turbine tower to the tower height are shown in Table 1: 

 

 

 

 

 

 

 

 

 

 

Table 1. Effect of varying tower height on first three modes of the wind 

turbine (mode values in Hz) 

 

 
 

Table 2. Effect of varying rotor-nacelle mass on first three modes of the 

wind turbine (mode values in Hz) 

 

 
 

The results of the analytical model from Table 1 and Table 2 show that 

the natural modes change significantly with tower height, and that the 

modes are slightly less sensitive to the rotor-nacelle mass. 

Nevertheless, the variation in rotor-nacelle mass still affects the 

eigenvalues of the wind turbine. This parameter sensitivity knowledge 

o structural eigenvalues is important for a design engineer, to select an 

appropriate combination of parameters in order that the design 

rotational speed of the rotor can be significantly away from the wind 

turbine first eigenvalue to avoid structural resonance due to rotating 

imbalance. 

 

(c) Effect of variable cross-sectional area 

The effect of variable cross-sectional area can be incorporated into the 

governing differential equation (1), which affects both the cross-

sectional and the second moment of area. For commercial wind 

turbines, the tower typically has a tapered cross-sectional area, which 

can be several joints. It can be simplified as a tapered truncated cone, 

and the area can be expressed as a function of the tower height, y. 

 

As illustration, the tower diameter can be expressed as a function of 

height coordinate ‘y’ as: 

 

�(�) = �"S �1 − �
= � + �"#                 (15) 

 

In this equation, the quantities D01 and D02 are the diameter of the 

tower at top and base, respectively. 

 

An analytical solution can still be obtained for simple enough variation 

as shown in equation (15). 

  

 

FINITE ELEMENT MODEL 
A simple finite element model for the wind turbine assembly is 

developed using Abaqus/CAETM. The elements are three-dimensional 

beam elements with two nodes. The model is shown in Fig. 5. 
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Parameter : Rotor-

Nacelle Mass
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Fig. 5: Finite element model of the wind turbine (rendered beam profile 

image from Abaqus/CAETM) 

 

The finite element model has the same parameters as the analytical 

model parameters presented in the preceding section. The model shows 

high agreement with the analytical model for the eigenvalues and 

eigenvectors.  

 

 
Fig. 6: Wind turbine model’s first mode of vibration 

 

As an illustration, Fig. 6 and Fig. 7 show the wind turbine views in the 

first mode, which are that of a cantilevered beam, with base fixed 

(geometric boundary condition) and rotor-nacelle interface at highest 

amplitude. 

 

 

 
Fig. 7: Wind turbine model’s fourth mode of vibration (flexing blade 

and tower) 

 

 

COMPARISON OF ANALYTICAL AND FINITE ELEMENT 

MODELS 
The comparison of the analytical model with the finite element model 

represents good agreement between the eigenvalues and the 

eigenvectors, thereby showing that the first mode of real significance 

for wind turbines is the transverse vibration mode.  

The comparison of the tower natural frequencies (in which tower 

participates significantly) from FEA and analytical method is presented 

in the table below: 

 

Table 3: Comparison of FEA and analytical formulations 

 

 
 

 
It should be noted that the FEA model shows several blade vibration 

modes between 2.72 Hz and 8.1 Hz, which are not modeled in the 

analytical method. The tower predominantly participates in the modes 

which are 0.34 Hz, 2.72 Hz and 8.1 Hz, and for higher modes. 

 

CONCLUSIONS 
The conclusion from the basic work presented in this paper is that the 

governing differential equations for the transverse vibrations of the 

wind turbines are solvable and tractable for simple boundary 

conditions. The structure of the partial differential equations with 

different boundary conditions together with the effect of rotating 

imbalance is shown, and the importance of different parameters on the 

response of the system is emphasized. The comparison with a three-

dimensional wind turbine model is presented, and it is shown that the 

transverse vibrations, as compared to axial and torsional vibrations, are 

of real significance to the design of a wind turbine. The comparison 

also shows good agreement between the analytical solution and the 

finite element solution. The presented work encourages the design 

engineer to use the presented equations and their solutions as a 

FEA Analytical

First Mode 0.332 0.34

Second Mode 2.805 2.72

Third Mode 8.342 8.10

Method of Analysis
Natural Frequencies (Hz)
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preliminary check and insight into the dynamics of the system before 

engaging in advanced and detailed modeling of the wind turbine using 

rotordynamic and finite element softwares. 
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