Solve the d.e. $x y^{\prime}=3 y+4 x$. (This is a linear d.e. because y and y^{\prime} appear only to the first power, multiplied only by functions of x.)

Step 1. Write the d.e. in the standard form $y^{\prime}+P(x) y=Q(x)$:

$$
\begin{equation*}
x y^{\prime}=3 y+4 x \Rightarrow x y^{\prime}-3 y=4 x \Rightarrow y^{\prime}-3 y / x=4 x / x \Rightarrow y^{\prime}-\frac{3}{x} y=4 \tag{1}
\end{equation*}
$$

Step 2. Find the integrating factor:

$$
\begin{equation*}
\rho(x)=e^{\int P(x) d x}=e^{\int-\frac{3}{x} d x}=e^{-3 \ln (x)}=\left[e^{\ln (x)}\right]^{-3}=x^{-3} . \tag{2}
\end{equation*}
$$

Notice that the minus sign is part of $P(x)$.
Step 3. Multiply the standard form of the d.e. by the integrating factor:

$$
\begin{equation*}
x^{-3}\left[y^{\prime}-\frac{3}{x} y\right]=x^{-3}[4] \Rightarrow x^{-3} y^{\prime}-3 x^{-4} y=4 x^{-3} \tag{3}
\end{equation*}
$$

Step 4. Use the Product Rule backwards to write the d.e. in the form $\frac{d}{d x}[\rho(x) y]=\rho(x) Q(x)$:

$$
\begin{equation*}
\frac{d}{d x}\left[x^{-3} y\right]=4 x^{-3} \tag{4}
\end{equation*}
$$

It's a good idea to apply the Product Rule to the left side of equation (4) to make sure equations (4) and (3) are equivalent.

Step 5. Integrate both sides:

$$
\begin{equation*}
x^{-3} y=\int 4 x^{-3} d x=-2 x^{-2}+c \tag{5}
\end{equation*}
$$

Step 6. Solve for $y: y=\frac{-2 x^{-2}+c}{x^{-3}} \Rightarrow y=-2 x+c x^{3}$

