Engineering Differential Equations
Some Useful MATLAB Matrix Algebra Commands

1. To define a matrix in MATLAB, separate the rows by semicolons and separate the entries in a row by spaces or commas. For example, to define the matrix

$$
A=\left(\begin{array}{rrr}
1 & 0 & 2 \\
3 & 1 & -2 \\
-5 & -1 & 9
\end{array}\right)
$$

use the MATLAB command
$\mathrm{A}=\left[\begin{array}{lllllllll}1 & 0 & 2 ; & 3 & 1 & -2 ; & -5 & -1 & 9\end{array}\right]$
2. To compute the determinant of a square matrix, use the command det $\operatorname{det}(\mathrm{A})$
3. To compute the inverse of an invertible square matrix, use the command inv $\operatorname{inv}(\mathrm{A})$
4. To solve the system of equations $A \mathbf{x}=\mathbf{b}$, use the command $\mathrm{x}=\mathrm{A} \backslash \mathrm{b}$ For example, to solve the system

$$
\left(\begin{array}{rrr}
1 & 0 & 2 \\
3 & 1 & -2 \\
-5 & -1 & 9
\end{array}\right) \quad\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{r}
5 \\
9 \\
-8
\end{array}\right)
$$

use the commands
b $=[5 ; 9 ;-8]$
$\mathrm{x}=\mathrm{A} \backslash \mathrm{b}$
5. The command rref (A) generates the row reduced echelon form of the matrix A. Try

```
Ab = [1 [10 2 5; 3 1 - -2 9; -5 [-1 9 9 -8]
rref(Ab)
```

6. The command $[\mathrm{X}, \mathrm{D}]=\operatorname{eig}(\mathrm{A})$ generates the eigenvalues and eigenvectors of a square matrix A. The eigenvalues are the diagonal entries of D, and the corresponding (normalized) eigenvectors are the corresponding columns of X. Try
```
A = [llllll
[X, D] = eig(A)
```

