MATH. 2360 Engineering Differential Equations Some Useful MATLAB Commands for Symbol Manipulation

Type the following command in the command window, which will open a new window called a mupad notebook:

```
>>mupad
```


A. Algebra

1. MATLAB will factor polynomials. Type the following command in the mupad notebook next to the [symbol, then hit the Enter key.
```
factor(x^4 - 5*x^2 + 4)
```

2. MATLAB can solve single equations. Try
```
solve(x^4 - 5*x^2 + 4 = 0)
```

3. MATLAB can also solve systems of equations:
```
solve({2*x + y = 5, x + 2*y = 4})
```

4. MATLAB can simplify expressions.

Try these commands to simplify $\frac{x}{2 x+1}+\frac{1}{x}$ and $\cos ^{3}(x)+\cos (x) \sin ^{2}(x)$

```
simplify(x/(2*x + 1) + 1/x)
simplify((cos(x))^3 + cos(x)*(sin(x))^2)
```


B. Calculus

MATLAB can find limits, derivatives, and integrals symbolically. Try the following commands to find $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}, \lim _{x \rightarrow \infty} e^{-x}, \frac{d}{d x}\left[x^{3}\right], \frac{d^{2}}{d x^{2}}\left[x^{3}\right], \int \frac{1}{x^{2}+1} d x$, and $\int \frac{x}{\left(x^{2}+1\right)^{3 / 2}} d x$, respectively.

```
limit(sin(x)/x, x=0)
limit(exp(-x), x=infinity)
diff(x^3, x)
diff(x^3, x$2)
int(1/(x^2+1), x)
int(x/(x^2+1)^(3/2), x)
```


C. Differential Equations

MATLAB can even solve differential equations symbolically. Here are some examples:

1. To solve the d.e. $x^{2} y^{\prime}+2 x y=3 x^{2}$, type the command solve(ode (x^2*y' $\left.\left.(x)+2 * x * y(x)=3 * x^{\wedge} 2, y(x)\right)\right)$
2. You can also solve initial value problems, such as $y^{\prime}=y^{2}, y(1)=1$:
```
solve(ode({y'(x) = y(x)^2, y(1) = 1}, y(x)))
```

3. You can name the solution of an initial value problem, and you can even calculate the value of the solution at any x. First enter this command:
```
y1:=solve(ode({y''(x) - y(x) = 0, y(0) = 1, y'(0) = 2}, y(x)))
```

and then enter this command:
float(y1 | x=2)
D. Exercises (These are from the homework for section 1.5.)

1. Solve the initial value problem $y^{\prime}+y=2, y(0)=0$.
2. Solve the initial value problem $x y^{\prime}-y=x, y(1)=7$.
