MATH. 2360 Engineering Differential Equations Solutions of Homogeneous Linear Equations with Constant Coefficients

Goal: Solve the d.e.

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+c y=0 \tag{1}
\end{equation*}
$$

where a, b, and c are constants. As discussed in class, $y=e^{r x}$ is a solution of this d.e. if and only if r is a root of the quadratic equation

$$
\begin{equation*}
a r^{2}+b r+c=0 . \tag{2}
\end{equation*}
$$

This quadratic equation is known as the characteristic equation of the d.e. (1). (Note that the coefficients a, b, and c in the characteristic equation are the same as the coefficients in the d.e.) We know that there are three possibilities for the roots of a quadratic equation: the equation can have two distinct real roots, a single repeated real root, or two complex roots. The table below gives the form of the solution of the d.e. in each of these three cases.

Characteristic equation $a r^{2}+b r+c=0$ has:	General solution of $a y^{\prime \prime}+b y^{\prime}+c y=0$ is:
2 real roots r_{1} and r_{2}	$y=c_{1} e^{r_{1} x}+c_{2} e^{r_{2} x}$
1 repeated real root r	$y=c_{1} e^{r x}+c_{2} x e^{r x}$
Complex roots $\alpha \pm \beta i$	$y=c_{1} e^{\alpha x} \cos (\beta x)+c_{2} e^{\alpha x} \sin (\beta x)$

Where did the solutions in the table come from? If the characteristic equation has two real roots, say r_{1} and r_{2}, then $y_{1}=e^{r_{1} x}$ and $y_{2}=e^{r_{2} x}$ are both solutions of the d.e. The solutions y_{1} and y_{2} are linearly independent because neither is a constant multiple of the other, so the general solution of (1) is

$$
\begin{equation*}
y=c_{1} e^{r_{1} x}+c_{2} e^{r_{2} x} \tag{3}
\end{equation*}
$$

What happens if the characteristic equation has only one real root? For example, consider the d.e. $y^{\prime \prime}+2 y^{\prime}+y=0$. The characteristic equation is $r^{2}+2 r+1=0 \Rightarrow(r+1)^{2}=0 \Rightarrow r=-1$. To see how to handle this situation, we rewrite the d.e. as $D^{2} y+2 D y+y=0$, where $D y$ denotes y^{\prime} and $D^{2} y$ denotes $y^{\prime \prime}$. Note that the d.e. can be "factored" and rewritten as $(D+1)(D y+y)=0$, or $(D+1) z=0$, where $z=D y+y$. We can solve the first-order d.e. $(D+1) z=0$, or $z^{\prime}+z=0$. This equation is both separable and linear, and its solution is $z=c_{1} e^{-x}$. We can now solve the first-order d.e. $z=D y+y$ for $y: D y+y=z \Rightarrow y^{\prime}+y=c_{1} e^{-x}$. This is a first-order linear d.e. The integrating factor is $\rho(x)=e^{\int 1 d x}=e^{x}$. Multiplying both sides of the d.e. by the integrating factor, we obtain $e^{x}\left(y^{\prime}+y\right)=e^{x} c_{1} e^{-x}=c_{1} \Rightarrow \frac{d}{d x}\left[e^{x} y\right]=c_{1} \Rightarrow e^{x} y=\int c_{1} d x=c_{1} x+c_{2} \Rightarrow y=c_{1} x e^{-x}+c_{2} e^{-x}$.
We can show by a similar argument that if the characteristic equation has a repeated root r, then the solution of the d.e. is $y=c_{1} e^{r x}+c_{2} x e^{r x}$.

The third possibility is that the characteristic equation has complex roots, say $r_{1}=\alpha+\beta i$ and $r_{2}=\alpha-\beta i$. As discussed in section 3.3 of Edwards \& Penney, if we assume that the solution of the d.e. is still $y=c_{1} e^{r_{1} x}+c_{2} e^{r_{2} x}$ and use Euler's formula $e^{i \theta}=\cos (\theta)+i \sin (\theta)$ to handle the complex exponents, we obtain

$$
\begin{aligned}
y & =c_{1} e^{(\alpha+\beta i) x}+c_{2} e^{(\alpha-\beta i) x}=c_{1} e^{\alpha x} e^{i \beta x}+c_{2} e^{\alpha x} e^{-i \beta x} \\
& =c_{1} e^{\alpha x}[\cos (\beta x)+i \sin (\beta x)]+c_{2} e^{\alpha x}[\underbrace{\cos (-\beta x)}_{=\cos (\beta x)}+i \underbrace{\sin (-\beta x)}_{=-\sin (\beta x)}] \\
& =\left(c_{1}+c_{2}\right) e^{\alpha x} \cos (\beta x)+\left(i c_{1}-i c_{2}\right) e^{\alpha x} \sin (\beta x)=d_{1} e^{\alpha x} \cos (\beta x)+d_{2} e^{\alpha x} \sin (\beta x)
\end{aligned}
$$

Of course, the way to check that you really have a solution to the d.e. is to plug it into the d.e. and check that the left side equals the right side.

