## Problem 1. (15 pts.)

Solve the following initial value problem: $y^{\prime}+y=x, y(0)=1$.
This is a linear d.e., and it is already in standard form. 5 pts.
Find the integrating factor: $\rho(x)=e^{\int 1 d x}=e^{x}$. 4 pts.
Multiply both sides of the standard form of the d.e. by the integrating factor:
$e^{x}\left[y^{\prime}+y\right]=x e^{x} .1 \mathrm{pt}$.
Use the Product Rule backwards to rewrite the d.e. as $\frac{d}{d x}\left[e^{x} y\right]=x e^{x}$. 2 pts.
Integrating both sides, we obtain $e^{x} y=\int x e^{x} d x=(x-1) e^{x}+c$ using formula 46 from the Table of Integrals. 2 pts.
$y(0)=1 \Rightarrow e^{0}(1)=(0-1) e^{0}+c \Rightarrow c=2.1 \mathrm{pt}$.
Therefore, $e^{x} y=(x-1) e^{x}+2$, so $y=x-1+2 e^{-x}$.

## Problem 2. (10 pts.)

Solve the following initial value problem: $x y^{\prime}+y^{2}=2 x y^{2}, y(1)=1$
$x y^{\prime}+y^{2}=2 x y^{2} \Rightarrow y^{\prime}=\frac{2 x y^{2}-y^{2}}{x}=\frac{y^{2}(2 x-1)}{x}$. This is a separable d.e. 3 pts.
Multiply by $d x$ and divide by $y^{2}$ :
$\frac{d y}{y^{2}}=\frac{(2 x-1)}{x} d x$ 2 pts. $\Rightarrow \int y^{-2} d y=\int\left(2-\frac{1}{x}\right) d x \Rightarrow \frac{y^{-1}}{-1}=2 x-\ln (x)+c 4$ pts.
$y(1)=1 \Rightarrow-1^{-1}=2(1)-\ln (1)+c \Rightarrow c=-31 \mathrm{pt}$.
Therefore, $-y^{-1}=2 x-\ln (x)-3 \Rightarrow y^{-1}=-2 x+\ln (x)+3 \Rightarrow y=[3+\ln (x)-2 x]^{-1}$

## Problem 3. ( 10 pts.)

A tank initially contains 100 grams of a radioactive substance. After 1 hour there are 90 grams of the substance remaining in the tank. What is the half-life of the substance? In other words, when will there be 50 grams of the substance remaining in the tank?

Let $t$ denote time (in hours) and let $x$ denote the amount (in grams) of radioactive substance in the tank. Then $x=x_{0} e^{-k t}$ where $x_{0}=x(0) .5$ pts.
$x_{0}=100$ so $x=100 e^{-k t} 1 \mathrm{pt}$.
$x(1)=90 \Rightarrow 90=100 e^{-k(1)} \Rightarrow 0.9=e^{-k} \Rightarrow \ln (0.9)=\ln \left(e^{-k}\right)=-k \Rightarrow k=-\ln (0.9) 2 \mathrm{pts}$.
Let $\tau$ denote the half-life. $x(\tau)=50 \Rightarrow 50=100 e^{-k \tau} \Rightarrow 0.5=e^{-k \tau} \Rightarrow \ln (0.5)=\ln \left(e^{-k \tau}\right)=-k \tau$
$\Rightarrow \tau=-\ln (0.5) / k \Rightarrow \tau=\frac{\ln (0.5)}{\ln (0.9)} \approx 6.6$ hours

Problem 4. (10 pts.) Find the general solution to each of the following linear homogeneous differential equations:
a. $(5 \mathrm{pts}.) y^{(4)}-4 y^{\prime \prime \prime}+3 y^{\prime \prime}=0$

The characteristic equation is $r^{4}-4 r^{3}+3 r^{2}=0 \Rightarrow r^{2}\left(r^{2}-4 r+3\right)=0 \Rightarrow r^{2}(r-1)(r-3)=0 \Rightarrow$ $r=0$ (double root) or $r=1$ or $r=32 \mathrm{pts}$.
Therefore, $y=c_{1} e^{0 x}+c_{2} x e^{0 x}+c_{3} e^{1 x}+c_{4} e^{3 x}$, or $y=c_{1}+c_{2} x+c_{3} e^{x}+c_{4} e^{3 x}$. 3 pts .
b. (5 pts.) $y^{\prime \prime \prime}-4 y^{\prime \prime}+4 y^{\prime}=0$

The characteristic equation is $r^{3}-4 r^{2}+4 r=0 \Rightarrow r\left(r^{2}-4 r+4\right)=0 \Rightarrow r(r-2)^{2}=0 \Rightarrow$ $r=0$ or $r=2$ (double root) 2 pts .

Therefore, $y=c_{1} e^{0 x}+c_{2} e^{2 x}+c_{3} x e^{2 x}$, or $y=c_{1}+c_{2} e^{2 x}+c_{3} x e^{2 x}$. 3 pts.

## Problem 5. (15 pts.)

Solve the following initial value problem: $y^{\prime \prime}+y^{\prime}-2 y=8 x^{2}, y(0)=4, y^{\prime}(0)=0$.
Step 1. Find $y_{c}$ by solving the d.e. $y^{\prime \prime}+y^{\prime}-2 y=0$.
Characteristic equation: $r^{2}+r-2=0 \Rightarrow(r+2)(r-1)=0 \Rightarrow r=-2$ or $r=1$.
Therefore, $y_{c}=c_{1} e^{-2 x}+c_{2} e^{x}$. 3 pts.
Step 2. Find $y_{p}$. You can use either of the following methods.
Method 1: Undetermined Coefficients. The nonhomogeneous term in the de is $8 x^{2}$, a polynomial of degree 2. We should therefore guess that $y_{p}$ is a polynomial of degree 2: $y_{p}=A x^{2}+B x+C$. No term in this guess duplicates a term in $y_{c}$, so there is no need to modify this guess. 3 pts.
$y=A x^{2}+B x+C \Rightarrow y^{\prime}=2 A x+B \Rightarrow y^{\prime \prime}=2 A$.
Therefore, the left side of the d.e. is $y^{\prime \prime}+y^{\prime}-2 y=2 A+[2 A x+B]-2\left[A x^{2}+B x+C\right]=$ $-2 A x^{2}+(2 A-4 B) x+(2 A+B-2 C)$.
We want this to equal the nonhomogeneous term $8 x^{2}$ :
$-2 A x^{2}+(2 A-2 B) x+(2 A+B-2 C)=8 x^{2} \Rightarrow-2 A=8,2 A-2 B=0,2 A+B-2 C=0$
$\Rightarrow A=-4, B=-4, C=-6$. Thus, $y_{p}=-4 x^{2}-4 x-6$. 6 pts.
Method 2: Variation of Parameters. From $y_{c}$ we obtain two independent solutions of the homogeneous d.e: $y_{1}=e^{-2 x}$ and $y_{2}=e^{x}$. 1 pt. The Wronskian is given by
$W(x)=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|=\left|\begin{array}{cc}e^{-2 x} & e^{x} \\ -2 e^{-2 x} & e^{x}\end{array}\right|=e^{-2 x}\left(e^{x}\right)-\left(-2 e^{-2 x}\right)\left(e^{x}\right)=3 e^{-x} .1 \mathrm{pt}$. .
$u_{1}=\int \frac{-y_{2} f(x)}{W(x)} d x=-\int \frac{e^{x}\left(8 x^{2}\right)}{3 e^{-x}} d x=-\frac{8}{3} \int x^{2} e^{2 x} d x=-\frac{1}{3}\left(4 x^{2}-4 x+2\right) e^{2 x}$ using integral table formulas 47 and 46 with $u=2 x$. 3 pts.
$u_{2}=\int \frac{y_{1} f(x)}{W(x)} d x=\int \frac{e^{-2 x}\left(8 x^{2}\right)}{3 e^{-x}} d x=\frac{8}{3} \int x^{2} e^{-x} d x=-\frac{8}{3}\left(x^{2}+2 x+2\right) e^{-x}$ using integral table formulas 47 and 46 with $u=-x$. 3 pts.
Therefore, $y_{p}=u_{1} y_{1}+u_{2} y_{2}=\left[-\frac{1}{3}\left(4 x^{2}-4 x+2\right) e^{2 x}\right] e^{-2 x}+\left[-\frac{8}{3}\left(x^{2}+2 x+2\right) e^{-x}\right] e^{x}=$ $-4 x^{2}-4 x-61 \mathrm{pt}$.
Step 3. $y=y_{c}+y_{p}$, so $y=c_{1} e^{-2 x}+c_{2} e^{x}-4 x^{2}-4 x-61$ pt.
Step 4. Use the initial conditions to determine the values of $c_{1}$ and $c_{2}$.
$y=c_{1} e^{-2 x}+c_{2} e^{x}-4 x^{2}-4 x-6 \Rightarrow y^{\prime}=-2 c_{1} e^{-2 x}+c_{2} e^{x}-8 x-4$
$y(0)=0 \Rightarrow c_{1} e^{0}+c_{2} e^{0}-4(0)^{2}-4(0)-6=4 \Rightarrow c_{1}+c_{2}=10$.
$y^{\prime}(0)=0 \Rightarrow-2 c_{1} e^{0}+c_{2} e^{0}-8(0)-4=0 \Rightarrow-2 c_{1}+c_{2}=4$.
$c_{1}+c_{2}=10,-2 c_{1}+c_{2}=4 \Rightarrow c_{1}=2, c_{2}=8$ 2pts. Therefore, $y=2 e^{-2 x}+8 e^{x}-4 x^{2}-4 x-6$

## Problem 6. (15 points)

Consider a forced, damped mass-spring system with mass 1 kg , damping coefficient $2 \mathrm{Ns} / \mathrm{m}$, spring constant $9 \mathrm{~N} / \mathrm{m}$, and an external force $F_{\text {ext }}(t)=12 \cos (3 t) \mathrm{N}$. Find the steady periodic solution (steady-state solution) for this system.

The d.e. modeling this system is $m x^{\prime \prime}+c x^{\prime}+k x=F_{e}(t)$, or $x^{\prime \prime}+2 x^{\prime}+9 x=12 \cos (3 t) .2 \mathrm{pts}$.
The steady-state (steady periodic) solution $x_{\mathrm{sp}}$ is the particular solution $x_{p} .3$ pts.
You can find $x_{p}$ using either the Method of Undetermined Coefficients the Method of Variation of Parameters. Here we use the Method of Undetermined Coefficients to save the work of finding $x_{c}$.

Since the nonhomogeneous term in the d.e. $(12 \cos (3 t))$ is a cosine, we guess that $x_{p}$ is the sum of a cosine and sine with the same frequency: $x_{p}=A \cos (3 t)+B \sin (3 t)$. The complementary solution $x_{c}$ will contain decaying exponential terms because of the damping term in the d.e., so we know that no term in our guess for $x_{p}$ duplicates a term in $x_{c}$. Therefore, there is no need to modify the guess. 4 pts.
$x=A \cos (3 t)+B \sin (3 t) \Rightarrow x^{\prime}=-3 A \sin (3 t)+3 B \cos (3 t) \Rightarrow x^{\prime \prime}=-9 A \cos (3 t)-9 B \sin (3 t)$.
Therefore, the left side of the d.e. is
$x^{\prime \prime}+2 x^{\prime}+9 x=-9 A \cos (3 t)-9 B \sin (3 t)+2[-3 A \sin (3 t)+3 B \cos (3 t)]+9[A \cos (3 t)+B \sin (3 t)]=$ $6 B \cos (3 t)-6 A \sin (3 t)$. We want this to equal the nonhomogeneous term $12 \cos (3 t)$, so $6 B=$ 12 and $-6 A=0 \Rightarrow A=0$ and $B=2$. Therefore, $x_{\mathrm{sp}}=2 \sin (3 t) 6 \mathrm{pts}$.

## Problem 7. (10 points)

a. (3 pts.) Find the Laplace transform of $e^{-t} \cos (2 t)$

Using the Laplace transform table entry for $\mathcal{L}\left\{e^{a t} \cos (k t)\right\}$ we have $\mathcal{L}\left\{e^{-t} \cos (2 t)\right\}=\frac{s+1}{(s+1)^{2}+4}$

## 3 pts.

b. ( 7 pts.) Find the inverse Laplace transform of $\frac{s+1}{s^{2}-3 s+2}$.

Use a partial fraction decomposition: $\frac{s+1}{s^{2}-3 s+2}=\frac{s+1}{(s-1)(s-2)}=\frac{A}{s-1}+\frac{B}{s-2} 2 \mathrm{pts}$.
$(s-1)(s-2)\left[\frac{s+1}{(s-1)(s-2)}\right]=(s-1)(s-2)\left[\frac{A}{s-1}+\frac{B}{s-2}\right] \Rightarrow s+1=A(s-2)+B(s-1)=$
$(A+B) s+(-2 A-B) \Rightarrow A+B=1,-2 A-B=1 \Rightarrow A=-2, B=33$ pts.
Therefore, $\mathcal{L}^{-1}\left\{\frac{s+1}{s^{2}-3 s+2}\right\}=\mathcal{L}^{-1}\left\{\frac{-2}{s-1}+\frac{3}{s-2}\right\}=-2 \mathcal{L}^{-1}\left\{\frac{1}{s-1}\right\}+3 \mathcal{L}^{-1}\left\{\frac{1}{s-2}\right\}=-2 e^{t}+3 e^{2} t$ 2 pts.

## Problem 8. (15 points)

Use the Laplace Transform to solve the following IVP: $x^{\prime \prime}+x=2 e^{t}, x(0)=1, x^{\prime}(0)=0$.
Solutions not using the Laplace transform method will not receive any credit.
$x^{\prime \prime}+x=2 e^{t} \Rightarrow \mathcal{L}\left\{x^{\prime \prime}+x\right\}=\mathcal{L}\left\{2 e^{t}\right\} \Rightarrow \mathcal{L}\left\{x^{\prime \prime}\right\}-\mathcal{L}\left\{x^{\prime}\right\}=2 \mathcal{L}\left\{e^{t}\right\}=\frac{2}{s-1} 3$ pts.
$\Rightarrow\left[s^{2} \mathcal{L}\{x\}-s x(0)-x^{\prime}(0)\right]+\mathcal{L}\{x\}=\frac{2}{s-1} 3$ pts.
$\left[s^{2} \mathcal{L}\{x\}-s \cdot 1-0\right]+\mathcal{L}\{x\}=\frac{2}{s-1} \Rightarrow\left(s^{2}+1\right) \mathcal{L}\{x\}=\frac{2}{s-1}+s=\frac{2+s^{2}-s}{s-1}=\frac{s^{2}-s+2}{s-1} \Rightarrow$
$\mathcal{L}\{x\}=\frac{s^{2}-s+2}{(s-1)\left(s^{2}+1\right)} 1$ pt. $\Rightarrow x=\mathcal{L}^{-1}\left\{\frac{s^{2}-s+2}{(s-1)\left(s^{2}+1\right)}\right\}$.
Use a partial fraction decomposition: $\frac{s^{2}-s+2}{(s-1)\left(s^{2}+1\right)}=\frac{A}{s-1}+\frac{B s+C}{s^{2}+1}$
$(s-1)\left(s^{2}+1\right)\left[\frac{s^{2}-s+2}{(s-1)\left(s^{2}+1\right)}\right]=(s-1)\left(s^{2}+1\right)\left[\frac{A}{s-1}+\frac{B s+C}{s^{2}+1}\right] \Rightarrow$
$s^{2}-s+2=A\left(s^{2}+1\right)+(B s+C)(s-1)=A s^{2}+A+B s^{2}+C s-B s-C=(A+B) s^{2}+(C-B) s+(A-C)$
$\Rightarrow A+B=1, C-B=-1, A-C=2 \Rightarrow A=1, B=0, C=-1.6$ pts.
Therefore, $x=\mathcal{L}^{-1}\left\{\frac{1}{s-1}+\frac{0 s-1}{s^{2}+1}\right\}=\mathcal{L}^{-1}\left\{\frac{1}{s-1}\right\}-\mathcal{L}^{-1}\left\{\frac{1}{s^{2}+1}\right\} \Rightarrow x=e^{t}-\sin (t)$ 2 pts.

