Problem 1. (10 points)

Is $y(x)=x^{2}$ is a solution of the d.e. $x y y^{\prime}-x^{4}=y^{2}$? Why or why not?
Left side of d.e: $y=x^{2} \Rightarrow y^{\prime}=2 x \Rightarrow x y y^{\prime}-x^{4}=x\left(x^{2}\right)(2 x)-x^{4}=2 x^{4}-x^{4}=x^{4}$. 4 pts.
Right side of d.e: $y=x^{2} \Rightarrow y^{2}=\left(x^{2}\right)^{2}=x^{4}$. 3 pts .
Left side $=$ right side, so $y(x)=x^{2}$ is a solution of the d.e. $x y y^{\prime}-x^{4}=y^{2} 3 \mathrm{pts}$.

Problem 2. (15 points)

A cup of coffee at a temperature of $150^{\circ} \mathrm{F}$ is brought into a room where the temperature is $75^{\circ} \mathrm{F}$. After 10 minutes the temperature of the coffee is $140^{\circ} \mathrm{F}$. What will the temperature of the coffee be after 30 minutes?

Let t denote time in minutes, let T denote the temperature of the can of soda in ${ }^{\circ} \mathrm{F}$, and let A denote room temperature ${ }^{\circ} \mathrm{F}$. As we showed in class, $T=A+\left(T_{0}-A\right) e^{-k t}$ where $T_{0}=T(0)$. Here $T_{0}=150^{\circ} \mathrm{F}$ and $A=75^{\circ} \mathrm{F}$, so $T=75+(150-75) e^{-k t}=75+75 e^{-k t} .6 \mathrm{pts}$.
$T(10)=140 \Rightarrow 140=75+75 e^{-k(10)} \Rightarrow 140-75=75 e^{-10 k} \Rightarrow \frac{65}{75}=e^{-10 k} \Rightarrow$
$\ln (13 / 15)=\ln \left(e^{-10 k}\right)=-10 k \Rightarrow k=-\frac{\ln (13 / 15)}{10} 6 \mathrm{pts}$.
Therefore, $T(30)=75+75 e^{-k(30)}=75+75 e^{30(\ln (13 / 15) / 10)} \Rightarrow T(30)=75+75 e^{3 \ln (13 / 15)} \approx 124^{\circ} \mathrm{F}$ 3 pts.

Problem 3. (25 points)

Solve the following initial value problem:

$$
x^{2} \frac{d y}{d x}=12-5 x y, \quad y(1)=2 .
$$

This is a linear d.e. because y and $d y / d x$ appear just to the first power, multiplied by functions of x alone. 5 pts.
First write the equation in standard form:
$x^{2} \frac{d y}{d x}=12-5 x y \Rightarrow x^{2} \frac{d y}{d x}+5 x y=12 \Rightarrow \frac{d y}{d x}+\left(\frac{5}{x}\right) y=\frac{12}{x^{2}} 3 \mathrm{pts}$.
Next, find the integrating factor: $\rho(x)=e^{\int 5 / x d x}=e^{5 \ln (x)}=x^{5} \cdot 6$ pts.
Multiply both sides of the standard form of the d.e. by the integrating factor:
$x^{5}\left[\frac{d y}{d x}+\left(\frac{5}{x}\right) y\right]=x^{5}\left(\frac{12}{x^{2}}\right) \Rightarrow x^{5} \frac{d y}{d x}+5 x^{4} y=12 x^{3} .2 \mathrm{pts}$.
Use the Product Rule backwards to rewrite the d.e. as $\frac{d}{d x}\left[x^{5} y\right]=12 x^{3} .4$ pts.

Integrating both sides, we obtain $x^{5} y=\int 12 x^{3} d x=3 x^{4}+c$. 3 pts.
$y(1)=2 \Rightarrow 1^{5}(2)=3(1)^{4}+c \Rightarrow c=-12$ pts.
Therefore, $x^{5} y=3 x^{4}-1$, so $y=\frac{3}{x}-\frac{1}{x^{5}}$.

Problem 4. (25 points)

Solve the following initial value problem:

$$
3 y^{2} \frac{d y}{d x}=1+2 x, \quad y(2)=1 .
$$

This is a separable d.e. 5 pts.

$$
\begin{aligned}
& 3 y^{2} \frac{d y}{d x}=1+2 x \Rightarrow 3 y^{2} d y=(1+2 x) d x .5 \mathrm{pts.} \\
& \Rightarrow \int 3 y^{2} d y=\int(1+2 x) d x \Rightarrow y^{3}=x+x^{2}+c .12 \mathrm{pts.} \\
& y(2)=1 \Rightarrow 1^{3}=2+2^{2}+c \Rightarrow c=-5 \text { 3pts. } \\
& \Rightarrow y^{3}=x+x^{2}-5 \Rightarrow y=\left(x+x^{2}-5\right)^{1 / 3} .
\end{aligned}
$$

Problem 5. (15 points)

A tank initially contains 50 liters of water in which 1 kilogram of salt is dissolved. A salt solution containing 0.1 kilogram of salt per liter is pumped into the tank at the rate of 10 liters per minute, and the well-mixed solution is pumped out of the tank at the rate of 6 liters per minute.
Let t denote time (in minutes), and let x denote the amount of salt in the tank at time t (in kilograms). Write down the differential equation $\left(\frac{d x}{d t}=\right.$ something $)$ and initial condition describing this mixing problem.

DO NOT SOLVE THE INITIAL VALUE PROBLEM. JUST WRITE DOWN THE D.E. AND INITIAL CONDITION.

$\frac{d x}{d t}=$ rate in - rate out 3 pts.
$=($ flow rate in $)($ concentration in $)-($ flow rate out $)($ concentration out $), 3$ pts. so
$\frac{d x}{d t}=\underbrace{\left(10 \frac{\mathrm{~L}}{\min }\right)}_{1 \mathrm{pt} .} \underbrace{\left(0.1 \frac{\mathrm{~kg}}{\mathrm{~L}}\right)}_{1 \mathrm{pt} .}-\underbrace{\left(6 \frac{\mathrm{~L}}{\min }\right)}_{1 \mathrm{pt} .} \underbrace{\left(\frac{x \mathrm{gm}}{(50+4 t) \mathrm{L}}\right)}_{5 \mathrm{pts} .}$.
(The volume in the tank at time t is initial volume $+t$ (flow rate in - flow rate out) $=50+(10-6) t$ liters.)
Initially there is 1 kg . of sugar in the tank, so $x(0)=11 \mathrm{pt}$. .
Therefore, the initial value problem describing this mixing problem is $\frac{d x}{d t}=1-\frac{6 x}{50+4 t}$ with $x(0)=1$.

