Problem 1. (20 points) Consider the autonomous differential equation $\frac{d x}{d t}=x^{2}-x-2$.
a. Find all critical points (equilibrium solutions) of this d.e.
$x^{2}-x-2=0 \Rightarrow(x+1)(x-2)=0 \Rightarrow$ the equilibrium solutions are $x=-1$ and $x=2$
3 pts.
b. Draw the phase line (phase diagram) for this d.e. 8 pts.

The two equilibrium solutions divide the phase line into 3 intervals: $x>2,-1<x<2$, and $x<-1$.
$\left.\frac{d x}{d t}\right|_{x=3}=(3+1)(3-2)>0$, so the direction arrow points up for $x>2$.
$\left.\frac{d x}{d t}\right|_{x=0}=(0+1)(0-2)<0$, so the direction arrow points down for $-1<x<2$.
$\left.\frac{d x}{d t}\right|_{x=-2}=(-2+1)(-2-2)>0$, so the direction arrow points up for $x<-1$.

c. Determine whether each critical point is stable or unstable.

From the phase line we can see that 2 is unstable and -1 is stable. 2 pts.
d. If $x(0)=1$, what value will $x(t)$ approach as t increases?

Since 1 lies in the interval $-1<x<2$, we can see from the phase line that $x(t) \rightarrow-1$ as t increases. 3 pts .
e. Sketch typical solution curves of the given d.e. Please draw these curves in a graph separate from your phase line. Be sure to include graphs of all equilibrium solutions, and be sure to label the axes. 4 pts. See the figure above.

Problem 2. (20 points) Solve the following differential equations:
a. $y^{\prime \prime}+2 y^{\prime}+y=0$

Characteristic equation: $r^{2}+2 r+1=0 \Rightarrow(r+1)^{2}=0 \Rightarrow$
$r=-1$ (repeated root). 4 pts. Therefore, $y=c_{1} e^{-x}+c_{2} x e^{-x}$ 6 pts.
b. $y^{\prime \prime}+5 y^{\prime}+6 y=0$

Characteristic equation: $r^{2}+5 r+6=0 \Rightarrow(r+2)(r+3)=0 \Rightarrow$
$r=-2$ or $r=-3.4$ pts. Therefore, $y=c_{1} e^{-2 x}+c_{2} e^{-3 x}$ pts.

Problem 3. (20 points) Solve the following initial value problem.

$$
2 x y \frac{d y}{d x}-3 x^{2}-2 y^{2}=0, \quad y(1)=2
$$

$2 x y \frac{d y}{d x}-3 x^{2}-2 y^{2}=0 \Rightarrow \frac{d y}{d x}=\frac{3 x^{2}+2 y^{2}}{2 x y} . \quad d y / d x$ equals a rational function, and every term has the same degree (2). Therefore, this d.e. is homogeneous. 4 pts.
We introduce the new variable $v=y / x$. In the d.e. we replace $\frac{d y}{d x}$ by $v+x \frac{d v}{d x}$ and we replace y by $x v$:

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{3 x^{2}+2 y^{2}}{2 x y} \Rightarrow \underbrace{\underbrace{\Rightarrow 2 v d v=\frac{3}{x} d x}_{2 \text { pts. }} \Rightarrow \int 2 v d v=\int \frac{3}{x} d x \Rightarrow \underbrace{v^{2}=3 \ln (x)+c}_{\boxed{3 \text { pts. }}} \Rightarrow \underbrace{\left(\frac{y}{x}\right)^{2}=3 \ln (x)+c}_{2 \text { pts. }}}_{\sqrt[4 \text { pts. }]{v+x \frac{d v}{d x}=\frac{3 x^{2}+2(x v)^{2}}{2 x(x v)}}=\frac{x^{2}\left(3+2 v^{2}\right)}{2 x^{2} v}=\frac{3+2 v^{2}}{2 v} \Rightarrow \underbrace{x \frac{d v}{d x}=\frac{3+2 v^{2}}{2 v}-v=\frac{3}{2 v}}_{\sqrt[3 p t s .]{x}}} .
\end{aligned}
$$

The initial condition $y(1)=2 \Rightarrow(2 / 1)^{2}=3 \ln (1)+c \Rightarrow c=42$ pts.
Therefore, $\left(\frac{y}{x}\right)^{2}=3 \ln (x)+4 \Rightarrow \frac{y}{x}=\sqrt{3 \ln (x)+4} \Rightarrow y=x \sqrt{3 \ln (x)+4}$.

Problem 4. (20 points) Solve the following initial value problem.

$$
4 x+y^{2}+\left[2 x y+3 y^{2}\right] \frac{d y}{d x}=0, \quad y(2)=1
$$

This d.e. is not separable, linear, or homogeneous. Test whether the d.e. is exact:

$$
\underbrace{4 x+y^{2}}_{M}+\underbrace{\left(2 x y+3 y^{2}\right)}_{N} \frac{d y}{d x}=0
$$

$\frac{\partial M}{\partial y}=\frac{\partial}{\partial y}\left[4 x+y^{2}\right]=2 y .1 \mathrm{pt} . \quad \frac{\partial N}{\partial x}=\frac{\partial}{\partial x}\left[2 x y+3 y^{2}\right]=2 y .1 \mathrm{pt}.$.
Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, the d.e. is exact. 3 pts. Therefore, the solution of the d.e. is $f(x, y)=c$, where the function f satisfies the conditions $\frac{\partial f}{\partial x}=M=4 x+y^{2}$ and $\frac{\partial f}{\partial y}=N=2 x y+3 y^{2}$. $\frac{\partial f}{\partial x}=4 x+y^{2} \Rightarrow f=\int\left(4 x+y^{2}\right) \partial x=2 x^{2}+x y^{2}+g(y) 6 \mathrm{pts}$.
$\Rightarrow \frac{\partial f}{\partial y}=\frac{\partial}{\partial y}\left[2 x^{2}+x y^{2}+g(y)\right]=2 x y+g^{\prime}(y)$
But $\frac{\partial f}{\partial y}=N=2 x y+3 y^{2} \Rightarrow 2 x y+g^{\prime}(y)=2 x y+3 y^{2} \Rightarrow g^{\prime}(y)=3 y^{2} \Rightarrow g(y)=y^{3} \Rightarrow$
$f=2 x^{2}+x y^{2}+y^{3} 6$ pts.
Therefore, the solution of the d.e. is $2 x^{2}+x y^{2}+y^{3}=c 2 \mathrm{pts}$.
$y(2)=1 \Rightarrow 2(2)^{2}+2(1)^{2}+1^{3}=c \Rightarrow c=11$. 1 pt .
Therefore, the solution of the initial value problem is $2 x^{2}+x y^{2}+y^{3}=11$

Problem 5. (10 points) Let P denote the population of a colony of tribbles. Suppose that the birth rate β (number of births per week per tribble) is proportional to \sqrt{P} and that the death rate δ (number of deaths per week per tribble) equals 0 . Suppose the initial population is 4 , and after two weeks the population is 16 . What is the population after 3 weeks?
$\frac{d P}{d t}=\beta P-\delta P=(k \sqrt{P}) P-(0) P=k P^{3 / 2} .3 \mathrm{pts}$.
This is a separable d.e: $\frac{d P}{d t}=k P^{3 / 2} \Rightarrow \frac{d P}{P^{3 / 2}}=k d t$
$\Rightarrow \int P^{-3 / 2} d P=\int k d t \Rightarrow-2 P^{-1 / 2}=k t+c \Rightarrow-\frac{2}{\sqrt{P}}=k t+c .4 \mathrm{pts}$.
$P(0)=4 \Rightarrow-\frac{2}{\sqrt{4}}=k(0)+c \Rightarrow c=-11 \mathrm{pt}$.
$\Rightarrow-\frac{2}{\sqrt{P}}=k t-1 \Rightarrow \frac{2}{\sqrt{P}}=1-k t$
$P(2)=16 \Rightarrow \frac{2}{\sqrt{16}}=1-k(2) \Rightarrow \frac{1}{2}=1-2 k \Rightarrow k=\frac{1}{4} .1 \mathrm{pt}$.
Therefore, $\frac{2}{\sqrt{P}}=1-\frac{t}{4} \Rightarrow \frac{2}{\sqrt{P(3)}}=1-\frac{3}{4}=\frac{1}{4} \Rightarrow \sqrt{P(3)}=8 \Rightarrow P(3)=64$ tribbles .1 pt.

