Problem 1. (20 pts.) Solve the following differential equations.
a. $\left(8 \mathrm{pts}\right.$.) $y^{\prime \prime}-4 y^{\prime}+13 y=0$

Characteristic equation: $r^{2}-4 r+13=0 \Rightarrow r=\frac{-(-4) \pm \sqrt{(-4)^{2}-4(1)(13)}}{2(1)}=\frac{4 \pm \sqrt{-36}}{2}=\frac{4 \pm 6 i}{2}=2 \pm 3 i$
4 pts.
Therefore, $y=c_{1} e^{2 x} \cos (3 x)+c_{2} e^{2 x} \sin (3 x)$ 4 pts.
b. (12 pts.) $y^{(4)}+y^{\prime \prime}=0$

Characteristic equation: $r^{4}+r^{2}=0 \Rightarrow r^{2}\left(r^{2}+1\right)=0 \Rightarrow r= \pm i$ or $r=0$ (double root). 4 pts. Therefore, $y=c_{1} e^{0 x}+c_{2} x e^{0 x}+c_{3} e^{0 x} \cos (1 x)+c_{4} e^{0 x} \sin (1 x)$, or

Problem 2. (25 pts.) Solve the following initial value problem:

$$
y^{\prime \prime}-4 y=16 x^{2}, y(0)=0, y^{\prime}(0)=4
$$

Step 1. Find y_{c} by solving the homogeneous d.e. $y^{\prime \prime}-4 y=0$.
Characteristic equation: $r^{2}-4=0 \Rightarrow(r+2)(r-2)=0 \Rightarrow r=-2$ or $r=2$.
Therefore, $y_{c}=c_{1} e^{-2 x}+c_{2} e^{2 x}$. 5 pts.
Step 2. Find y_{p}.
Method 1: Undetermined Coefficients. Since the nonhomogeneous term $16 x^{2}$ in the given d.e. is a polynomial of degree 2 , we should guess that y_{p} is a polynomial of degree 2 :
$y_{p}=A x^{2}+B x+C .4$ pts. No term in this guess duplicates a term in y_{c}, so there is no need to modify this guess. 2 pts.
$y=A x^{2}+B x+C \Rightarrow y^{\prime}=2 A x+B \Rightarrow y^{\prime \prime}=2 A$. Therefore, the left side of the d.e. is
$y^{\prime \prime}-4 y=2 A-4\left[A x^{2}+B x+C\right]=-4 A x^{2}-4 B x+(2 A-4 C)$. We want this to equal the nonhomogeneous term $16 x^{2}$:
$-4 A x^{2}-4 B x+(2 A-4 C)=16 x^{2} \Rightarrow-4 A=16,-4 B=0,2 A-4 C=0 \Rightarrow A=-4, B=0, C=-2$.
Thus, $y_{p}=-4 x^{2}-2$. 9 pts .
Method 2: Variation of Parameters. From y_{c} we obtain two independent solutions of the homogeneous d.e: $y_{1}=e^{-2 x}$ and $y_{2}=e^{2 x}$. 1 pt. The Wronskian is given by
$W(x)=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|=\left|\begin{array}{cc}e^{-2 x} & e^{2 x} \\ -2 e^{-2 x} & 2 e^{2 x}\end{array}\right|=e^{-2 x}\left(2 e^{2 x}\right)-\left(-2 e^{-2 x}\right) e^{2 x}=4.1 \mathrm{pt}$.
$u_{1}=\int \frac{-y_{2} f(x)}{W(x)} d x=-\int \frac{e^{2 x}\left(16 x^{2}\right)}{4} d x=-4 \int\left[x^{2} e^{2 x}\right] d x=$
$-\left(2 x^{2}-2 x+1\right) e^{2 x}$ after 2 integrations by parts. 4 pts.
$u_{2}=\int \frac{y_{1} f(x)}{W(x)} d x=\int \frac{e^{-2 x}\left(16 x^{2}\right)}{4} d x=4 \int\left[x^{2} e^{-2 x}\right] d x=-\left(2 x^{2}+2 x+1\right) e^{-2 x}$ after 2 integrations by parts. 4 pts.
Therefore, $y_{p}=u_{1} y_{1}+u_{2} y_{2}=\left[-\left(2 x^{2}-2 x+1\right) e^{2 x}\right] e^{-2 x}+\left[-\left(2 x^{2}+2 x+1\right) e^{-2 x}\right] e^{2 x}=$ $-\left(2 x^{2}-2 x+1\right)-\left(2 x^{2}+2 x+1\right)=-4 x^{2}-25$ pts.

Step 3. $y=y_{c}+y_{p}$, so $y=c_{1} e^{-2 x}+c_{2} e^{2 x}-4 x^{2}-2.3 \mathrm{pts}$.
Step 4. Use the initial conditions to determine the values of the arbitrary constants in the general solution.
$y=c_{1} e^{-2 x}+c_{2} e^{2 x}-4 x^{2}-2 \Rightarrow y^{\prime}=-2 c_{1} e^{-2 x}+2 c_{2} e^{2 x}-8 x$.
$y(0)=0 \Rightarrow 0=c_{1} e^{0}+c_{2} e^{0}-4(0)^{2}-2=c_{1}+c_{2}-2 \Rightarrow c_{1}+c_{2}=2$
$y^{\prime}(0)=4 \Rightarrow 4=-2 c_{1} e^{0}+2 c_{2} e^{0}-8(0)=-2 c_{1}+2 c_{2} \cdot c_{1}+c_{2}=2,-2 c_{1}+2 c_{2}=4 \Rightarrow c_{1}=0, c_{2}=2$
2 pts.
Therefore, $y=2 e^{2 x}-4 x^{2}-2$

Problem 3. (20 points) Consider a forced, damped mass-spring system with mass $m=1 \mathrm{~kg}$, damping constant $c=5 \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}$, spring constant $k=4 \mathrm{~N} / \mathrm{m}$, and external force $F_{\text {ext }}=40 \cos (2 t) \mathrm{N}$. Find the steady-state (steady periodic) solution x_{sp}.

The d.e. describing a mass-spring system is $m x^{\prime \prime}+c x^{\prime}+k x=F_{\mathrm{e}}(t) .2$ pts.
In this problem, the d.e. becomes $x^{\prime \prime}+5 x^{\prime}+4 x=40 \cos (2 t) .2$ pts.
The steady periodic solution is the particular solution $x_{p} .4 \mathrm{pts}$. Since the nonhomogeneous term $40 \cos (2 t)$ is a cosine, we should guess that x_{p} is a combination of a cosine and a sine with the same frequency: $x_{p}=A \cos (2 t)+B \sin (2 t)$. 5 pts. (No part of this guess will duplicate part of x_{c} because x_{c} is a transient term containing decaying exponential functions.)
$x=A \cos (2 t)+B \sin (2 t) \Rightarrow x^{\prime}=-2 A \sin (2 t)+2 B \cos (2 t) \Rightarrow x^{\prime \prime}=-4 A \cos (2 t)-4 B \sin (2 t)$. Therefore, the left side of the d.e. is
$\left.x^{\prime \prime}+5 x^{\prime}+4 x=-4 A \cos (2 t)-4 B \sin (2 t)+5[-2 A \sin (2 t)+2 B \cos (2 t))\right]+4[A \cos (2 t)+B \sin (2 t)]$ $=10 B \cos (2 t)-10 A \sin (2 t)$.
We want this to equal the nonhomogeneous term $40 \cos (2 t)$:
$10 B \cos (2 t)-10 A \sin (2 t)=40 \cos (2 t) \Rightarrow 10 B=40,-10 A=0 \Rightarrow A=0$ and $B=4$. Therefore, $x_{\mathrm{sp}}=4 \sin (2 t)$. 7 pts .

Problem 4. (20 points) Solve the system $\left\{\begin{array}{l}x^{\prime}=x+6 y \\ y^{\prime}=x\end{array}\right.$
Note: $x^{\prime}=d x / d t$ and $y^{\prime}=d y / d t . t$ is the independent variable.
Take the derivative of both sides of the second d.e. in the system: $y^{\prime}=x \Rightarrow y^{\prime \prime}=x^{\prime}$. The first d.e. in the system is $x^{\prime}=x+6 y$. Therefore, $y^{\prime \prime}=x+6 y$. From the second d.e. in the system, $x=y^{\prime}$, so we have $y^{\prime \prime}=y^{\prime}+6 y 8$ pts.
$y^{\prime \prime}=y^{\prime}+6 y \Rightarrow y^{\prime \prime}-y^{\prime}-6 y=0$.
Characteristic equation: $r^{2}-r-6=0 \Rightarrow(r+2)(r-3)=0 \Rightarrow r=-2$ or $r=3 \Rightarrow y=c_{1} e^{-2 t}+c_{2} e^{3 t}$. 8 pts.

The second d.e. in the given system says $x=y^{\prime}$, so $x=-2 c_{1} e^{-2 t}+3 c_{2} e^{3 t}$. Therefore, the solution of the given system is $x=-2 c_{1} e^{-2 t}+3 c_{2} e^{3 t}, y=c_{1} e^{-2 t}+c_{2} e^{3 t} 4 \mathrm{pts}$.

