Problem 1. (10 points)

Is $y(x)=x^{3}$ is a solution of the d.e. $y y^{\prime}-2 x^{5}=x^{2} y$? Why or why not?
Left side of d.e: $y=x^{3} \Rightarrow y^{\prime}=3 x^{2} \Rightarrow y y^{\prime}-2 x^{5}=x^{3}\left(3 x^{2}\right)-2 x^{5}=3 x^{5}-2 x^{5}=x^{5}$. 4 pts.
Right side of d.e: $y=x^{3} \Rightarrow x^{2} y=x^{2}\left(x^{3}\right)^{2}=x^{5}$. 3 pts.
Left side $=$ right side, so $y(x)=x^{3}$ is a solution of the d.e. $y y^{\prime}-2 x^{5}=x^{2} y$ pts.

Problem 2. (15 points)

A cup of coffee at a temperature of $160^{\circ} \mathrm{F}$ is brought into a room where the temperature is $80^{\circ} \mathrm{F}$. After 5 minutes the temperature of the coffee is $150^{\circ} \mathrm{F}$. What will the temperature of the coffee be after 20 minutes?

Let t denote time in minutes, let T denote the temperature of the can of soda in ${ }^{\circ} \mathrm{F}$, and let A denote room temperature ${ }^{\circ} \mathrm{F}$. As we showed in class, $T=A+\left(T_{0}-A\right) e^{-k t}$ where $T_{0}=T(0)$. Here $T_{0}=160^{\circ} \mathrm{F}$ and $A=80^{\circ} \mathrm{F}$, so $T=80+(160-80) e^{-k t}=80+80 e^{-k t} .6 \mathrm{pts}$.
$T(5)=150 \Rightarrow 150=80+80 e^{-k(5)} \Rightarrow 150-80=80 e^{-5 k} \Rightarrow \frac{70}{80}=e^{-5 k} \Rightarrow$
$\ln (7 / 8)=\ln \left(e^{-5 k}\right)=-5 k \Rightarrow k=-\frac{\ln (7 / 8)}{5} 6 \mathrm{pts}$.
Therefore, $T(20)=80+80 e^{-k(20)}=80+80 e^{20(\ln (7 / 8) / 5)} \Rightarrow T(20)=80+80 e^{4 \ln (7 / 8)} \approx 127^{\circ} \mathrm{F}$ 3ts.

Problem 3. (25 points)

Solve the following initial value problem:

$$
x \frac{d y}{d x}=6 x^{2}-4 y, \quad y(1)=2 .
$$

This is a linear d.e. because y and $d y / d x$ appear just to the first power, multiplied by functions of x alone. 5 pts.
First write the equation in standard form:
$x \frac{d y}{d x}=6 x^{2}-4 y \Rightarrow x \frac{d y}{d x}+4 y=6 x^{2} \Rightarrow \frac{d y}{d x}+\left(\frac{4}{x}\right) y=6 x 3 \mathrm{pts}$.
Next, find the integrating factor: $\rho(x)=e^{\int 4 / x d x}=e^{4 \ln (x)}=x^{4}$. 6 pts.
Multiply both sides of the standard form of the d.e. by the integrating factor:
$x^{4}\left[\frac{d y}{d x}+\left(\frac{4}{x}\right) y\right]=x^{4}(6 x) \Rightarrow x^{4} \frac{d y}{d x}+4 x^{3} y=6 x^{5} .2 \mathrm{pts}$.
Use the Product Rule backwards to rewrite the d.e. as $\frac{d}{d x}\left[x^{4} y\right]=6 x^{5}$. 4 pts.
Integrating both sides, we obtain $x^{4} y=\int 6 x^{5} d x=x^{6}+c .3$ pts.
$y(1)=2 \Rightarrow 1^{4}(2)=(1)^{6}+c \Rightarrow c=12 \mathrm{pts}$.
Therefore, $x^{4} y=x^{6}+1$, so $y=x^{2}+\frac{1}{x^{4}}$.

Problem 4. (25 points)

Solve the following initial value problem:

$$
4 y^{3} \frac{d y}{d x}=2+3 x^{2}, \quad y(2)=1
$$

This is a separable d.e. 5 pts.
$4 y^{3} \frac{d y}{d x}=2+3 x^{2} \Rightarrow 4 y^{3} d y=\left(2+3 x^{2}\right) d x .5 \mathrm{pts}$.
$\Rightarrow \int 4 y^{3} d y=\int\left(2+3 x^{2}\right) d x \Rightarrow y^{4}=2 x+x^{3}+c .12 \mathrm{pts}$.
$y(2)=1 \Rightarrow 1^{4}=2(2)+2^{3}+c \Rightarrow c=-113 \mathrm{pts}$.
$\Rightarrow y^{4}=2 x+x^{3}-11 \Rightarrow y=\left(2 x+x^{3}-11\right)^{1 / 4}$

Problem 5. (15 points)

A tank initially contains 200 liters of water in which 2 kilograms of salt are dissolved. A salt solution containing 0.2 kilogram of salt per liter is pumped into the tank at the rate of 10 liters per minute, and the well-mixed solution is pumped out of the tank at the rate of 4 liters per minute.

Let t denote time (in minutes), and let x denote the amount of salt in the tank at time t (in kilograms). Write down the differential equation $\left(\frac{d x}{d t}=\right.$ something $)$ and initial condition describing this mixing problem.

DO NOT SOLVE THE INITIAL VALUE PROBLEM. JUST WRITE DOWN THE D.E. AND INITIAL CONDITION.

$\frac{d x}{d t}=$ rate in - rate out 3 pts .
$=($ flow rate in $)($ concentration in $)-($ flow rate out $)($ concentration out $), 3$ pts. so
$\frac{d x}{d t}=\underbrace{\left(10 \frac{\mathrm{~L}}{\min }\right)}_{1 \mathrm{pt} .} \underbrace{\left(0.2 \frac{\mathrm{~kg}}{\mathrm{~L}}\right)}_{1 \mathrm{pt} .}-\underbrace{\left(4 \frac{\mathrm{~L}}{\min }\right)}_{1 \mathrm{pt} .} \underbrace{\left(\frac{x \mathrm{gm}}{(200+6 t) \mathrm{L}}\right)}_{5 \mathrm{pts} .}$.
(The volume in the tank at time t is initial volume $+t$ (flow rate in - flow rate out) $=200+(10-4) t$ liters.)
Initially there are 2 kg . of salt in the tank, so $x(0)=21 \mathrm{pt}$.
Therefore, the initial value problem describing this mixing problem is $\frac{d x}{d t}=2-\frac{4 x}{200+6 t} \quad$ with $x(0)=2$.

