Problem 1. (20 points) Consider the autonomous differential equation $\frac{d x}{d t}=x^{2}-x-6$.
a. Find all critical points (equilibrium solutions) of this d.e.
$x^{2}-x-6=0 \Rightarrow(x+2)(x-3)=0 \Rightarrow$ the equilibrium solutions are $x=-2$ and $x=3$ 3 pts.
b. Draw the phase line (phase diagram) for this d.e. 8 pts.

The two equilibrium solutions divide the phase line into 3 intervals: $x>3,-2<x<3$, and $x<-2$.
$\left.\left.\frac{d x}{d t}\right|_{x=4}=(4+2)(4-3)\right)>0$, so the direction arrow points up for $x>3$.
$\left.\frac{d x}{d t}\right|_{x=0}=(0+2)(0-3)<0$, so the direction arrow points down for $-2<x<3$.
$\left.\frac{d x}{d t}\right|_{x=-3}=(-3+2)(-3-3)>0$, so the direction arrow points up for $x<-2$.

c. Determine whether each critical point is stable or unstable.

From the phase line we can see that -2 is stable and 3 is unstable. 2 pts.
d. If $x(0)=1$, what value will $x(t)$ approach as t increases?

Since 1 lies in the interval $-2<x<3$, we can see from the phase line that $x(t) \rightarrow-2$ as t increases. 3 pts .
e. Sketch typical solution curves of the given d.e. Please draw these curves in a graph separate from your phase line. Be sure to include graphs of all equilibrium solutions, and be sure to label the axes. 4 pts. See the figure above.

Problem 2. (20 points) Solve the following differential equations:
a. $y^{\prime \prime}-4 y^{\prime}+3 y=0$

Characteristic equation: $r^{2}-4 r+3=0 \Rightarrow(r-1)(r-3)=0 \Rightarrow$ $r=1$ or $r=3$. 4 pts. Therefore, $y=c_{1} e^{x}+c_{2} e^{3 x}$. 6 pts.
b. $y^{\prime \prime}-2 y^{\prime}+y=0$

Characteristic equation: $r^{2}-2 r+1=0 \Rightarrow(r-1)^{2}=0 \Rightarrow$ $r=1$ (repeated root). 4 pts. Therefore, $y=c_{1} e^{x}+c_{2} x e^{x}$ pts.

Problem 3. (20 points) Solve the following initial value problem.

$$
8 x^{3}+y^{3}+\left[3 x y^{2}+2 y\right] \frac{d y}{d x}=0, \quad y(1)=2
$$

This d.e. is not separable, linear, or homogeneous. Test whether the d.e. is exact:

$$
\underbrace{8 x^{3}+y^{3}}_{M}+\underbrace{\left(3 x y^{2}+2 y\right)}_{N} \frac{d y}{d x}=0
$$

$\frac{\partial M}{\partial y}=\frac{\partial}{\partial y}\left[8 x^{3}+y^{3}\right]=3 y^{2} .1 \mathrm{pt} . \quad \frac{\partial N}{\partial x}=\frac{\partial}{\partial x}\left[3 x y^{2}+2 y\right]=3 y^{2} .1 \mathrm{pt}$.
Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, the d.e. is exact. 3 pts. Therefore, the solution of the d.e. is $f(x, y)=c$, where the function f satisfies the conditions $\frac{\partial f}{\partial x}=M=8 x^{3}+y^{3}$ and $\frac{\partial f}{\partial y}=N=3 x y^{2}+2 y$. $\frac{\partial f}{\partial x}=8 x^{3}+y^{3} \Rightarrow f=\int\left(8 x^{3}+y^{3}\right) \partial x=2 x^{4}+x y^{3}+g(y) 6$ pts.
$\Rightarrow \frac{\partial f}{\partial y}=\frac{\partial}{\partial y}\left[2 x^{4}+x y^{3}+g(y)\right]=3 x y^{2}+g^{\prime}(y)$
But $\frac{\partial f}{\partial y}=N=3 x y^{2}+2 y \Rightarrow 3 x y^{2}+g^{\prime}(y)=3 x y^{2}+2 y \Rightarrow g^{\prime}(y)=2 y \Rightarrow g(y)=y^{2} \Rightarrow$ $f=2 x^{4}+x y^{3}+y^{2} 6$ pts.

Therefore, the solution of the d.e. is $2 x^{4}+x y^{3}+y^{2}=c 2 \mathrm{pts}$.
$y(1)=2 \Rightarrow 2(1)^{4}+1(2)^{3}+2^{2}=c \Rightarrow c=14.1 \mathrm{pt}$.

Therefore, the solution of the initial value problem is

$$
2 x^{4}+x y^{3}+y^{2}=14
$$

Problem 4. (20 points) Solve the following initial value problem.

$$
2 x y^{2} \frac{d y}{d x}+3 x^{3}-2 y^{3}=0, \quad y(1)=3
$$

$2 x y^{2} \frac{d y}{d x}+3 x^{3}-2 y^{3}=0 \Rightarrow \frac{d y}{d x}=\frac{2 y^{3}-3 x^{3}}{2 x y^{2}} . \quad d y / d x$ equals a rational function, and every term has the same degree (3). Therefore, this d.e. is homogeneous. 4 pts.
We introduce the new variable $v=y / x$. In the d.e. we replace $\frac{d y}{d x}$ by $v+x \frac{d v}{d x}$ and we replace y by $x v$:

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{2 y^{3}-3 x^{3}}{2 x y^{2}} \Rightarrow \underbrace{v+x \frac{d v}{d x}=\frac{2(x v)^{3}-3 x^{3}}{2 x(x v)^{2}}}_{\boxed{4 \text { pts. }}}=\frac{x^{3}\left(2 v^{3}-3\right)}{2 x^{3} v^{2}}=\frac{2 v^{3}-3}{2 v^{2}} \Rightarrow \underbrace{x \frac{d v}{d x}=\frac{2 v^{3}-3}{2 v^{2}}-v=-\frac{3}{2 v^{2}}}_{\sqrt[3]{ } \mathrm{pts.}} \\
& \underbrace{\Rightarrow v^{2} d v=-\frac{3}{2 x} d x}_{\text {2 pts. }} \Rightarrow \int v^{2} d v=-\int \frac{3}{2 x} d x \Rightarrow \underbrace{\frac{v^{3}}{3}=-\frac{3}{2} \ln (x)+c}_{\boxed{3 \text { pts. }}} \Rightarrow \underbrace{\frac{1}{3}\left(\frac{y}{x}\right)^{3}=-\frac{3}{2} \ln (x)+c}_{2 \text { pts. }}
\end{aligned}
$$

The initial condition $y(1)=3 \Rightarrow \frac{1}{3}\left(\frac{3}{1}\right)^{3}=-\frac{3}{2} \ln (1)+c \Rightarrow c=92$ pts..
Therefore, $\frac{1}{3}\left(\frac{y}{x}\right)^{3}=-\frac{3}{2} \ln (x)+9 \Rightarrow\left(\frac{y}{x}\right)^{3}=-\frac{9}{2} \ln (x)+27 \Rightarrow \frac{y}{x}=\left(-\frac{9}{2} \ln (x)+27\right)^{1 / 3} \Rightarrow$ $y=x\left(27-\frac{9}{2} \ln (x)\right)^{1 / 3}$.

Problem 5. (10 points)Let P denote the population of a colony of tribbles. Suppose that the birth rate β (number of births per week per tribble) is proportional to $\frac{1}{\sqrt{P}}$ and that the death rate δ (number of deaths per week per tribble) equals 0 . Suppose the initial population is 4 , and after two weeks the population is 16 . What is the population after 3 weeks?
$\frac{d P}{d t}=\beta P-\delta P=\left(\frac{k}{\sqrt{P}}\right) P-(0) P=k P^{1 / 2} .3$ pts.
This is a separable d.e: $\frac{d P}{d t}=k P^{1 / 2} \Rightarrow \frac{d P}{P^{1 / 2}}=k d t$
$\Rightarrow \int P^{-1 / 2} d P=\int k d t \Rightarrow 2 P^{1 / 2}=k t+c \Rightarrow 2 \sqrt{P}=k t+c .4 \mathrm{pts}$.
$P(0)=4 \Rightarrow 2 \sqrt{4}=k(0)+c \Rightarrow c=41 \mathrm{pt} . \Rightarrow 2 \sqrt{P}=k t+4$
$P(2)=16 \Rightarrow 2 \sqrt{16}=k(2)+4 \Rightarrow 8=2 k+4 \Rightarrow k=2.1 \mathrm{pt}$.
Therefore, $2 \sqrt{P}=2 t+4 \Rightarrow 2 \sqrt{P(3)}=2(3)+4=10 \Rightarrow \sqrt{P(3)}=5 \Rightarrow P(3)=25$ tribbles . 1 pt .

