Problem 1. (20 pts.) Solve the following differential equations.

a. (8 pts.)
$$y'' - 6y' + 13y = 0$$

Characteristic equation: $r^2 - 6r + 13 = 0 \Rightarrow r = \frac{-(-6) \pm \sqrt{(-6)^2 - 4(1)(13)}}{2(1)} = \frac{6 \pm \sqrt{-16}}{2} = \frac{6 \pm 4i}{2} = 3 \pm 2i$

4 pts.

Therefore, $y = c_1 e^{3x} \cos(2x) + c_2 e^{3x} \sin(2x)$ 4 pts.

b. (12 pts.) $y^{(4)} - y'' = 0$.

Characteristic equation: $r^4 - r^2 = 0 \Rightarrow r^2(r^2 - 1) = 0 \Rightarrow r^2(r+1)(r-1) = 0$ (double root) or r = 0-1 or r = 1. 4 pts. Therefore, $y = c_1 e^{0x} + c_2 x e^{0x} + c_3 e^{1x} + c_4 e^{-1x}$, or $y = c_1 + c_2 x + c_3 e^{-x} + c_4 e^{x}$ 8 pts.

Problem 2. (25 pts.) Solve the following initial value problem:

$$y'' + 4y = 8x^2$$
, $y(0) = 1$, $y'(0) = 0$.

Step 1. Find y_c by solving the homogeneous d.e. y'' + 4y = 0.

Characteristic equation: $r^2 + 4 = 0 \Rightarrow r^2 = -4 \Rightarrow r = \pm \sqrt{-4} = 0 \pm 2i$.

Therefore, $y_c = c_1 e^{0x} \cos(2x) + c_2 e^{0x} \sin(2x) = c_1 \cos(2x) + c_2 \sin(2x)$. 5 pts.

Step 2. Find y_p .

Method 1: Undetermined Coefficients. Since the nonhomogeneous term $8x^2$ in the given d.e. is a polynomial of degree 2, we should guess that y_p is a polynomial of degree 2:

 $y_p = Ax^2 + Bx + C$. 4 pts. No term in this guess duplicates a term in y_c , so there is no need to modify this guess. 2 pts.

 $y = Ax^2 + Bx + C \Rightarrow y' = 2Ax + B \Rightarrow y'' = 2A$. Therefore, the left side of the d.e. is $y'' + 4y = 2A + 4[Ax^2 + Bx + C] = 4Ax^2 + 4Bx + (2A + 4C)$. We want this to equal the nonho-

mogeneous term $8x^2$:

 $4Ax^{2} + 4Bx + (2A + 4C) = 8x^{2} \Rightarrow 4A = 8, \ 4B = 0, \ 2A + 4C = 0 \Rightarrow A = 2, \ B = 0, \ C = -1.$ Thus, $y_{p} = 2x^{2} - 1$. 9 pts.

Method 2: Variation of Parameters. From y_c we obtain two independent solutions of the homoge-

neous d.e:
$$y_1 = \cos(2x)$$
 and $y_2 = \sin(2x)$. 1 pt. The Wronskian is given by
$$W(x) = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = \begin{vmatrix} \cos(2x) & \sin(2x) \\ -2\sin(2x) & 2\cos(2x) \end{vmatrix} = \cos(2x) (2\cos(2x)) - (-2\sin(2x))\sin(2x) = \cos(2x) (2\cos(2x)) - (-2\sin(2x))\sin(2x) = \cos(2x) \cos(2x) = \cos(2x) = \cos(2x) \cos(2x) = \cos(2x) \cos(2x) = \cos(2x) \cos(2x) = \cos(2x$$

 $2\left[\cos^2(2x) + \sin^2(2x)\right] = 2.$ 1 pt

$$u_1 = \int \frac{-y_2 f(x)}{W(x)} dx = -\int \frac{\sin(2x) (8x^2)}{2} dx = -4 \int [x^2 \sin(2x)] dx =$$

 $(2x^2-1)\cos(2x)-2x\sin(2x)$ after 2 integrations by parts. 4 pts.

$$u_2 = \int \frac{y_1 f(x)}{W(x)} dx = \int \frac{\cos(2x) (8x^2)}{2} dx = 4 \int \left[x^2 \cos(2x) \right] dx = \left(2x^2 - 1 \right) \sin(2x) + 2x \sin(2x)$$
af-

ter 2 integrations by parts. 4 pts.

Therefore,
$$y_p = u_1 y_1 + u_2 y_2 =$$

$$\left[\left(2x^2 - 1 \right) \cos(2x) - 2x \sin(2x) \right] \cos(2x) + \left[\left(2x^2 - 1 \right) \sin(2x) + 2x \sin(2x) \right] \sin(2x) =$$

$$\left(2x^2 - 1 \right) \cos^2(2x) - 2x \sin(2x) \cos(2x) + \left(2x^2 - 1 \right) \sin^2(2x) + 2x \sin(2x) \cos(2x) =$$

$$\left(2x^2 - 1 \right) \left[\cos^2(2x) + \sin^2(2x) \right] = 2x^2 - 1 \quad \boxed{5 \text{ pts.}}$$

Step 3. $y = y_c + y_p$, so $y = c_1 \cos(2x) + c_2 \sin(2x) + 2x^2 - 1$. 3 pts.

Step 4. Use the initial conditions to determine the values of the arbitrary constants in the general solution.

$$y = c_1 \cos(2x) + c_2 \sin(2x) + 2x^2 - 1 \Rightarrow y' = -2c_1 \sin(2x) + 2c_2 \cos(2x) + 4x.$$

$$y(0) = 1 \Rightarrow 1 = c_1 \cos(0) + c_2 \sin(0) + 2(0)^2 - 1 = c_1 - 1 \Rightarrow c_1 = 2$$

$$y'(0) = 0 \Rightarrow 0 = -2c_1 \sin(0) + 2c_2 \cos(0) + 4(0) = 2c_2 \Rightarrow c_2 = 0$$
2 pts.

Therefore, $y = 2\cos(2x) + 2x^2 - 1$

Problem 3. (20 points) Consider a forced, damped mass-spring system with mass m=1 kg, damping constant c=10 N·s/m, spring constant k=9 N/m, and external force $F_{\rm ext}=60\cos(3t)$ N. Find the steady-state (steady periodic) solution $x_{\rm sp}$.

The d.e. describing a mass-spring system is $mx'' + cx' + kx = F_e(t)$. 2 pts. In this problem, the d.e. becomes $x'' + 10x' + 9x = 60\cos(3t)$. 2 pts.

The steady periodic solution is the particular solution x_p . 4 pts. Since the nonhomogeneous term $60\cos(3t)$ is a cosine, we should guess that x_p is a combination of a cosine and a sine with the same frequency: $x_p = A\cos(3t) + B\sin(3t)$. 5 pts. (No part of this guess will duplicate part of x_c because x_c is a transient term containing decaying exponential functions.)

 $x = A\cos(3t) + B\sin(3t) \Rightarrow x' = -3A\sin(3t) + 3B\cos(3t) \Rightarrow x'' = -9A\cos(3t) - 9B\sin(3t)$. Therefore, the left side of the d.e. is

 $x'' + 10x' + 9x = -9A\cos(3t) - 9B\sin(3t) + 10\left[-3A\sin(3t) + 3B\cos(3t)\right] + 9\left[A\cos(3t) + B\sin(3t)\right] = 30B\cos(2t) - 30A\sin(2t).$

We want this to equal the nonhomogeneous term $60\cos(3t)$:

 $30B\cos(2t) - 30A\sin(2t) = 60\cos(3t) \Rightarrow 30B = 60, -30A = 0 \Rightarrow A = 0 \text{ and } B = 2.$ Therefore,

$$x_{\rm sp} = 2\sin(3t). \quad 7 \text{ pts.}$$

Problem 4. (20 points) Solve the system $\begin{cases} x' = x + 12y \\ y' = x \end{cases}$

Note: x' = dx/dt and y' = dy/dt. t is the independent variable.

Take the derivative of both sides of the second d.e. in the system: $y' = x \Rightarrow y'' = x'$. The first d.e. in the system is x' = x + 12y. Therefore, y'' = x + 12y. From the second d.e. in the system, x = y', so we have y'' = y' + 12y 8 pts.

$$y'' = y' + 12y \Rightarrow y'' - y' - 12y = 0.$$

Characteristic equation: $r^2 - r - 12 = 0 \Rightarrow (r+3)(r-4) = 0 \Rightarrow r = -3 \text{ or } r = 4 \Rightarrow y = c_1 e^{-3t} + c_2 e^{4t}.$ 8 pts.

The second d.e. in the given system says x = y', so $x = -3c_1e^{-3t} + 4c_2e^{4t}$. Therefore, the solution of the given system is $x = -3c_1e^{-3t} + 4c_2e^{4t}$, $y = c_1e^{-3t} + c_2e^{4t}$ 4 pts.