MATH. 2360 Engineering Differential Equations
 Solutions to Sample Problems for Exam \# 2

Problem 1. Consider the autonomous differential equation $\frac{d x}{d t}=4 x^{2}-x^{4}$.
a. Find all critical points (equilibrium solutions) of this d.e.
$4 x^{2}-x^{4}=0 \Rightarrow x^{2}\left(4-x^{2}\right)=0 \Rightarrow x^{2}(2+x)(2-x)=0 \Rightarrow$ the critical points are $-2,0$ and 2
b. Draw the phase line (phase diagram) for this d.e.

The three critical points divide the phase line into 4 intervals: $x>2,0<x<2,-2<x<$ 0 , and $x<-2$.
$\left.\frac{d x}{d t}\right|_{x=3}=3^{2}(2+3)(2-3)<0$, so the direction arrow points down for $x>2$.
$\left.\frac{d x}{d t}\right|_{x=1}=1^{2}(2+1)(2-1)>0$, so the direction arrow points up for $0<x<2$.
$\left.\frac{d x}{d t}\right|_{x=-1}=(-1)^{2}(2-1)(2-(-1))>0$, so the arrow points up for $-2<x<0$.
$\left.\frac{d x}{d t}\right|_{x=-3}=(-3)^{2}(2-3)(2-(-3))<0$, so the arrow points down for $x<-2$.

c. Determine whether each critical point is stable or unstable.

From the phase line we can see that 2 is stable but -2 and 0 are unstable
d. If $x(0)=-1$, what value will $x(t)$ approach as t increases?

Since -1 lies in the interval $-2<x<0$, we can see from the phase line that $x(t) \rightarrow 0$ as t increases.
e. Sketch typical solution curves of the given d.e. Please draw these curves in a graph separate from your phase line. Be sure to include graphs of all equilibrium solutions, and be sure to label the axes.

Problem 2. Solve the following differential equations:
a. $y^{\prime \prime}-10 y^{\prime}+25 y=0$

Characteristic equation: $r^{2}-10 r+25=0 \Rightarrow(r-5)^{2}=0 \Rightarrow$ $r=5$ (repeated root). Therefore, $y=c_{1} e^{5 x}+c_{2} x e^{5 x}$
b. $y^{\prime \prime}+y^{\prime}-2 y=0$

Characteristic equation: $r^{2}+r-2=0 \Rightarrow(r+2)(r-1)=0 \Rightarrow$ $r=-2$ or $r=1$. Therefore, $y=c_{1} e^{-2 x}+c_{2} e^{x}$
c. $y^{\prime \prime}+6 y^{\prime}+8 y=0$

Characteristic equation: $r^{2}+6 r+8=0 \Rightarrow(r+4)(r+2)=0 \Rightarrow$ $r=-4$ or $r=-2$. Therefore, $y=c_{1} e^{-4 x}+c_{2} e^{-2 x}$
d. $y^{\prime \prime}-6 y^{\prime}+9 y=0$

Characteristic equation: $r^{2}-6 r+9=0 \Rightarrow(r-3)^{2}=0 \Rightarrow$ $r=3$ (repeated root). Therefore, $y=c_{1} e^{3 x}+c_{2} x e^{3 x}$

Problem 3. Solve the following initial value problem.

$$
\begin{gathered}
3 x^{2}+6 x y+\left[3 x^{2}+2 y\right] \frac{d y}{d x}=0, \quad y(1)=0 . \\
\underbrace{3 x^{2}+6 x y}_{M}+\underbrace{\left[3 x^{2}+2 y\right]}_{N} \frac{d y}{d x}=0 .
\end{gathered}
$$

$\frac{\partial M}{\partial y}=\frac{\partial}{\partial y}\left[3 x^{2}+6 x y\right]=6 x . \quad \frac{\partial N}{\partial x}=\frac{\partial}{\partial x}\left[3 x^{2}+2 y\right]=6 x$.
Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, the d.e. is exact. Therefore, the solution of the d.e. is $f(x, y)=c$, where the function f satisfies the conditions $\frac{\partial f}{\partial x}=M=3 x^{2}+6 x y$ and $\frac{\partial f}{\partial y}=N=3 x^{2}+2 y \cdot \frac{\partial f}{\partial x}=3 x^{2}+6 x y \Rightarrow$ $f=\int\left(3 x^{2}+6 x y\right) d x=x^{3}+3 x^{2} y+g(y) \Rightarrow \frac{\partial f}{\partial y}=3 x^{2}+g^{\prime}(y)$.
But $\frac{\partial f}{\partial y}=N=3 x^{2}+2 y$, so $3 x^{2}+g^{\prime}(y)=3 x^{2}+2 y \Rightarrow g^{\prime}(y)=2 y \Rightarrow g(y)=y^{2}$.
Therefore, $f=x^{3}+3 x^{2} y+y^{2}$, so the solution of the d.e. is $x^{3}+3 x^{2} y+y^{2}=c$.
The initial condition $y(1)=0 \Rightarrow 1^{3}+3(1)^{2}(0)+0^{2}=c \Rightarrow c=1$. Therefore, the solution of the given IVP is $x^{3}+3 x^{2} y+y^{2}=1$

Problem 4. Solve the following initial value problem.

$$
x^{3}+y^{3}-x y^{2} \frac{d y}{d x}=0, \quad y(1)=3
$$

$x^{3}+y^{3}-x y^{2} \frac{d y}{d x}=0 \Rightarrow \frac{d y}{d x}=\frac{x^{3}+y^{3}}{x y^{2}}$. Since $d y / d x$ equals a rational function in which each term has the same degree (3), the d.e. is homogeneous. We introduce the new variable $v=y / x$. In the d.e. we replace $\frac{d y}{d x}$ by $v+x \frac{d v}{d x}$ and we replace y by $x v$:
$\frac{d y}{d x}=\frac{x^{3}+y^{3}}{x y^{2}} \Rightarrow v+x \frac{d v}{d x}=\frac{x^{3}+(x v)^{3}}{x(x v)^{2}}=\frac{x^{3}\left(1+v^{3}\right)}{x^{3} v}=\frac{1+v^{3}}{v^{2}}=\frac{1}{v^{2}}+v \Rightarrow x \frac{d v}{d x}=\frac{1}{v^{2}}$
$\Rightarrow v^{2} d v=\frac{1}{x} d x \Rightarrow \int v^{2} d v=\int \frac{1}{x} d x \Rightarrow \frac{v^{3}}{3}=\ln (x)+c \Rightarrow \frac{(y / x)^{3}}{3}=\ln (x)+c \Rightarrow$
$(y / x)^{3}=3 \ln (x)+\underbrace{3 c}_{c_{1}}$. The initial condition $y(1)=3 \Rightarrow(3 / 1)^{3}=3 \ln (1)+c_{1} \Rightarrow c_{1}=271 \mathrm{pt}$. .
Therefore, $(y / x)^{3}=3 \ln (x)+27 \Rightarrow(y / x)=[3 \ln (x)+27]^{1 / 3} \Rightarrow y=x[3 \ln (x)+27]^{1 / 3}$.
Problem 5. Solve the following initial value problem.

$$
x^{4}+4 y^{4}-4 x y^{3} \frac{d y}{d x}=0, \quad y(1)=2
$$

$x^{4}+4 y^{4}-4 x y^{3} \frac{d y}{d x}=0 \Rightarrow \frac{d y}{d x}=\frac{x^{4}+4 y^{4}}{4 x y^{3}} . d y / d x$ equals a rational function, and every term has the same degree (4). Therefore, this d.e. is homogeneous.
We introduce the new variable $v=y / x$. In the d.e. we replace $\frac{d y}{d x}$ by $v+x \frac{d v}{d x}$ and we replace y by $x v$:

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{x^{4}+4 y^{4}}{4 x y^{3}} \Rightarrow v+x \frac{d v}{d x}=\frac{x^{4}+4(x v)^{4}}{4 x(x v)^{3}}=\frac{x^{4}\left(1+4 v^{4}\right)}{4 x^{4} v^{3}}=\frac{1+4 v^{4}}{4 v^{3}}=\frac{1}{4 v^{3}}+v \Rightarrow x \frac{d v}{d x}=\frac{1}{4 v^{3}} \\
& \Rightarrow 4 v^{3} d v=\frac{1}{x} d x \Rightarrow \int 4 v^{3} d v=\int \frac{1}{x} d x \Rightarrow v^{4}=\ln (x)+c \Rightarrow\left(\frac{y}{x}\right)^{4}=\ln (x)+c
\end{aligned}
$$

The initial condition $y(1)=2 \Rightarrow(2 / 1)^{4}=\ln (1)+c \Rightarrow c=16$.
Therefore, $\left(\frac{y}{x}\right)^{4}=\ln (x)+16 \Rightarrow \frac{y}{x}=[\ln (x)+16]^{1 / 4} \Rightarrow y=x[\ln (x)+16]^{1 / 4}$.
Problem 6. (20 points) Solve the following initial value problem.

$$
2 x y^{2}+3 x^{2}+\left(2 x^{2} y+4 y^{3}\right) \frac{d y}{d x}=0, \quad y(1)=2
$$

This d.e. is not separable, linear, or homogeneous. Test whether the d.e. is exact:

$$
\begin{array}{r}
\underbrace{2 x y^{2}+3 x^{2}}_{M}+\underbrace{\left(2 x^{2} y+4 y^{3}\right)}_{N} \frac{d y}{d x}=0 \\
\frac{\partial M}{\partial y}=\frac{\partial}{\partial y}\left[2 x y^{2}+3 x^{2}\right]=4 x y . \quad \frac{\partial N}{\partial x}=\frac{\partial}{\partial x}\left[2 x^{2} y+4 y^{3}\right]=4 x y .
\end{array}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, the d.e. is exact. Therefore, the solution of the d.e. is $f(x, y)=c$, where the function f satisfies the conditions $\frac{\partial f}{\partial x}=M=2 x y^{2}+3 x^{2}$ and $\frac{\partial f}{\partial y}=N=2 x^{2} y+4 y^{3} \cdot \frac{\partial f}{\partial x}=2 x y^{2}+3 x^{2} \Rightarrow f=\int\left(2 x y^{2}\right.$
$\Rightarrow \frac{\partial f}{\partial y}=\frac{\partial}{\partial y}\left[x^{2} y^{2}+x^{3}+g(y)\right]=2 x^{2} y+g^{\prime}(y)$
But $\frac{\partial f}{\partial y}=N=2 x^{2} y+4 y^{3} \Rightarrow 2 x^{2} y+g^{\prime}(y)=2 x^{2} y+4 y^{3} \Rightarrow g^{\prime}(y)=4 y^{3} \Rightarrow g(y)=y^{4} \Rightarrow$ $f=x^{2} y^{2}+x^{3}+y^{4}$

Therefore, the solution of the d.e. is $x^{2} y^{2}+x^{3}+y^{4}=c$
$y(1)=2 \Rightarrow 1^{2} 2^{2}+1^{3}+2^{4}=c \Rightarrow c=21$.
Therefore, the solution of the initial value problem is $x^{2} y^{2}+x^{3}+y^{4}=21$

Problem 7. (10 points) Let P denote the population of a colony of dodos. Suppose that the birth rate β (number of births per week per dodo) equals 0 and that the death rate δ (number of deaths per week per dodo) is constant. Suppose the initial population is 100 , and after ten weeks the population is 50 . What is the population after 43 weeks?

$$
\frac{d P}{d t}=\beta P-\delta P=(0) P-(k) P=-k P .
$$

This is a separable d.e: $\frac{d P}{d t}=-k P \Rightarrow \frac{d P}{P}=-k d t$
$\Rightarrow \int P^{-1} d P=\int-k d t \Rightarrow \ln (P)=-k t+c \Rightarrow P=e^{-k t+c}=e^{-k t} \underbrace{e^{c}}_{c_{1}}$.
$P(0)=100 \Rightarrow 100=e^{0} c_{1} \Rightarrow c_{1}=100$
$\Rightarrow P=100 e^{-k t} . P(10)=50 \Rightarrow 50=100 e^{-10 k} \Rightarrow \frac{50}{100}=e^{-10 k} \Rightarrow \ln (0.5)=\ln \left(e^{-10 k}\right)=-10 k \Rightarrow k=-\frac{\ln (0.5)}{10}$.
Therefore, $P(43)=100 e^{-43 k} \approx 5$ dodos.

Problem 8. (10 points) A ball of mass m falling vertically downward experiences two forces: its weight, and a drag force proportional to the square of its velocity. Let t denote time, and let v denote the ball's velocity at time t. (Assume $v<0$ for the falling object. In other words, up is the positive direction.)

Write a differential equation ($d v / d t=$ something) modeling the ball's motion. Make sure the drag force has the proper sign (+ or -). All parameters are assumed to be positive.

DO NOT SOLVE THE DIFFERENTIAL EQUATION, JUST WRITE IT DOWN.
Newton's Second Law says that $F=m a$, where F is the total force acting on an object and a is the object's acceleration.

The total force acting on the ball is $F=\underbrace{-m g}_{\text {weight }}+\underbrace{k v^{2}}_{\text {drag }}$
(Because the ball is falling, the drag is in the upward direction, so the drag force must be positive.)
Therefore, $F=m a \Rightarrow-m g+k v^{2}=m \frac{d v}{d t} \Rightarrow \frac{d v}{d t}=-g+\underbrace{\frac{k}{m}}_{k_{1}} v^{2} \Rightarrow \frac{d v}{d t}=-g+k_{1} v^{2}$

