Problem 1. 20 points Consider the autonomous differential equation $\frac{d x}{d t}=-x^{2}-x+6$.
a. Find all critical points (equilibrium solutions) of this d.e.
$-x^{2}-x+6 \Rightarrow-\left(x^{2}+x-6\right)=0 \Rightarrow-(x+3)(x-2)=0 \Rightarrow$

the equilibrium solutions are $x=-3$ and $x=2$
3 pts.

b. Draw the phase line (phase diagram) for this d.e. 8 pts.

The two equilibrium solutions divide the phase line into 3 intervals: $x>2,-3<x<2$, and $x<-3$.
$\left.\frac{d x}{d t}\right|_{x=3}=-(3+3)(3-2)<0$, so the direction arrow points down for $x>2$.
$\left.\frac{d x}{d t}\right|_{x=0} ^{x=3}=-(0+4)(0-2)>0$, so the direction arrow points up for $-3<x<2$.
$\left.\frac{d x}{d t}\right|_{x=-4}=-(-4+3)(-4-2)<0$, so the direction arrow points down for $x<-3$.

c. Determine whether each critical point is stable or unstable.

From the phase line we can see that 2 is stable and -3 is unstable. 2 pts.
d. If $x(0)=0$, what value will $x(t)$ approach as t increases?

Since 0 lies in the interval $-3<x<2$, we can see from the phase line that $x(t) \rightarrow 2$ as t increases. 3 pts.
e. Sketch typical solution curves of the given d.e. Please draw these curves in a graph separate from your phase line. Be sure to include graphs of all equilibrium solutions, and be sure to label the axes. 4 pts.
See the figure above.

Problem 2. (20 points) Solve the following differential equations:
a. $y^{\prime \prime}+4 y^{\prime}+4 y=0$

Characteristic equation: $r^{2}+4 r+4=0 \Rightarrow(r+2)^{2}=0 \Rightarrow$ $r=-2$ (repeated root). 4 pts. Therefore, $y=c_{1} e^{-2 x}+c_{2} x e^{-2 x} 6 \mathrm{pts}$.
b. $y^{\prime \prime}-3 y^{\prime}-4 y=0$

Characteristic equation: $r^{2}-3 r-4=0 \Rightarrow(r+1)(r-4)=0 \Rightarrow$
$r=-1$ or $r=4.4$ pts. Therefore, $y=c_{1} e^{-x}+c_{2} e^{4 x}$, 6 pts.

Problem 3. (20 points) Solve the following initial value problem.

$$
4 x^{3}+3 y^{3}-3 x y^{2} \frac{d y}{d x}=0, \quad y(1)=2
$$

$4 x^{3}+3 y^{3}-3 x y^{2} \frac{d y}{d x}=0 \Rightarrow \frac{d y}{d x}=\frac{4 x^{3}+3 y^{3}}{3 x y^{2}} . \quad d y / d x$ equals a rational function, and every term has the same degree (3). Therefore, this d.e. is homogeneous. 4 pts.
We introduce the new variable $v=y / x$. In the d.e. we replace $\frac{d y}{d x}$ by $v+x \frac{d v}{d x}$ and we replace y by $x v$:

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{4 x^{3}+3 y^{3}}{3 x y^{2}} \Rightarrow \underbrace{v+x \frac{d v}{d x}=\frac{4 x^{3}+3(x v)^{3}}{3 x(x v)^{2}}}_{\boxed{4 \text { pts. }}}=\frac{x^{3}\left(4+3 v^{3}\right)}{3 x^{3} v^{2}}=\frac{4}{3 v^{2}}+v \Rightarrow \underbrace{x \frac{d v}{d x}=\frac{4}{3 v^{2}}}_{\sqrt{3 \mathrm{pts} .}} \\
& \underbrace{3 v^{2} d v=\frac{4}{x} d x}_{2 \text { pts. }} \Rightarrow \int 3 v^{2} d v=\int \frac{4}{x} d x \Rightarrow \underbrace{v^{3}=4 \ln (x)+c}_{\sqrt{3 \mathrm{pts} .}} \Rightarrow \underbrace{\left(\frac{y}{x}\right)^{3}=4 \ln (x)+c}_{2 \mathrm{pts.}}
\end{aligned}
$$

The initial condition $y(1)=2 \Rightarrow(2 / 1)^{3}=4 \ln (1)+c \Rightarrow c=82$ pts. .
Therefore, $\left(\frac{y}{x}\right)^{3}=4 \ln (x)+8 \Rightarrow y=x(4 \ln (x)+8)^{1 / 3}$.

Problem 4. (20 points) Solve the following initial value problem.

$$
4 x^{3}+3 y^{3}+\left[9 x y^{2}-6 y\right] \frac{d y}{d x}=0, \quad y(2)=1
$$

This d.e. is not separable, linear, or homogeneous. Test whether the d.e. is exact:

$$
\begin{aligned}
& \qquad \underbrace{4 x^{3}+3 y^{3}}_{M}+\underbrace{\left(9 x y^{2}-6 y\right)}_{N} \frac{d y}{d x}=0 \\
& \frac{\partial M}{\partial y}=\frac{\partial}{\partial y}\left[4 x^{3}+3 y^{3}\right]=9 y^{2} . \underbrace{}_{1 \mathrm{pt.}} \frac{\partial N}{\partial x}=\frac{\partial}{\partial x}\left[9 x y^{2}-6 y\right]=9 y^{2} . \operatorname{lpt.}^{(\mathrm{pt}} \\
& \text { Since } \frac{\partial M}{\partial y}=\frac{\partial N}{\partial x} \text {, the d.e. is exact. } 3 \text { pts. Therefore, the solution of the d.e. is } f(x, y)=c \text {, } \\
& \text { where the function } f \text { satisfies the conditions } \frac{\partial f}{\partial x}=M=4 x^{3}+3 y^{3} \text { and } \frac{\partial f}{\partial y}=N=9 x y^{2}-6 y . \\
& \frac{\partial f}{\partial x}=4 x^{3}+3 y^{3} \Rightarrow f=\int\left(4 x^{3}+3 y^{3}\right) \partial x=x^{4}+3 x y^{3}+g(y) \text { 6 pts. } \\
& \Rightarrow \frac{\partial f}{\partial y}=\frac{\partial}{\partial y}\left[x^{4}+3 x y^{3}+g(y)\right]=9 x y^{2}+g^{\prime}(y) \\
& \text { But } \frac{\partial f}{\partial y}=N=9 x y^{2}-6 y \Rightarrow 9 x y^{2}+g^{\prime}(y)=9 x y^{2}-6 y \Rightarrow g^{\prime}(y)=-6 y \Rightarrow g(y)=-3 y^{2} \Rightarrow \\
& f=x^{4}+3 x y^{3}-3 y^{2} \boxed{6 \text { pts. }}
\end{aligned}
$$

Therefore, the solution of the d.e. is $x^{4}+3 x y^{3}-3 y^{2}=c 2 \mathrm{pts}$. $y(2)=1 \Rightarrow 2^{4}+3(2)(1)^{3}-3(1)^{2}=c \Rightarrow c=19$. 1 pt .

Therefore, the solution of the initial value problem is $x^{4}+3 x y^{3}-3 y^{2}=19$

Problem 5. (10 points) Let P denote the population of a colony of tribbles. Suppose that the birth rate β (number of births per week per tribble) is proportional to $1 / \sqrt{P}$ and that the death rate δ (number of deaths per week per tribble) equals 0 . Suppose the initial population is 16 , and after one week the population is 25 . What is the population after 3 weeks?
$\frac{d P}{d t}=\beta P-\delta P=\left(\frac{k}{\sqrt{P}}\right) P-(0) P=k \sqrt{P} .3 \mathrm{pts}$.
This is a separable d.e: $\frac{d P}{d t}=k \sqrt{P} \Rightarrow \frac{d P}{\sqrt{P}}=k d t \Rightarrow \int P^{-1 / 2} d P=\int k d t \Rightarrow 2 P^{1 / 2}=k t+c$. 4 pts .
$P(0)=16 \Rightarrow 2(16)^{1 / 2}=k(0)+c \Rightarrow c=8 \Rightarrow 2 P^{1 / 2}=k t+81 \mathrm{pt}$.
$P(1)=25 \Rightarrow 2(25)^{1 / 2}=k(1)+8 \Rightarrow 10=k+8 \Rightarrow k=2.1 \mathrm{pt}$.
Therefore, $2(P(3))^{1 / 2}=2(3)+8=14 \Rightarrow P(3)=49$ tribbles. 1 pt.

