Problem 1. (20 pts.) Solve the following differential equations.

a. (8 pts.) y'' + 6y' + 10y = 0

Characteristic equation: $r^2 + 6r + 10 = 0 \Rightarrow r = \frac{-6 \pm \sqrt{6^2 - 4(1)(10)}}{2(1)} = \frac{-6 \pm \sqrt{-4}}{2} = \frac{-6 \pm 2i}{2} = -3 \pm i$ [4 pts.] Therefore, $y = c_1 e^{-3x} \cos(x) + c_2 e^{-3x} \sin(x)$] [4 pts.]

b. (12 pts.) $y^{(4)} - 4y'' = 0.$

Characteristic equation: $r^4 - 4r^2 = 0 \Rightarrow r^2 (r^2 - 4) = 0 \Rightarrow r^2 (r + 2)(r - 2) = 0 \Rightarrow$ r = 0 (double root) or r = -2 or r = 2. 4 pts. Therefore, $y = c_1 e^{0x} + c_2 x e^{0x} + c_3 e^{-2x} + c_4 e^{2x}$, or $y = c_1 + c_2 x + c_3 e^{-2x} + c_4 e^{2x}$ 8 pts.

Problem 2. (25 pts.) Solve the following initial value problem:

$$y'' + 5y' + 4y = 100xe^x, \ y(0) = -4, \ y'(0) = 0.$$

Step 1. Find y_c by solving the homogeneous d.e. y'' + 5y' + 4y = 0. Characteristic equation: $r^2 + 5r + 4 = 0 \Rightarrow (r+4)(r+1) = 0 \Rightarrow r = -4$ or r = -1. Therefore, $y_c = c_1 e^{-4x} + c_2 e^{-x}$. 5 pts.

Step 2. Find y_p .

Method 1: Undetermined Coefficients. Since the nonhomogeneous term $100xe^x$ in the given d.e. is a polynomial of degree 1 times an exponential function, we should guess that y_p is a polynomial of degree 1 times an exponential function:

 $y_p = (Ax + B)e^x.$ A pts. No term in this guess duplicates a term in y_c , so there is no need to modify this guess. 2 pts. $y = (Ax + B)e^x \Rightarrow y' = Ae^x + (Ax + B)e^x = (Ax + A + B)e^x \Rightarrow y'' = Ae^x + (Ax + A + B)e^x = (Ax + 2A + B)e^x.$ Therefore, the left side of the d.e. is $y'' + 5y' + 4y = (Ax + 2A + B)e^x + 5[(Ax + A + B)e^x] + 4[(Ax + B)e^x] = (10Ax + 7A + 10B)e^x.$ We want this to equal the nonhomogeneous term $100xe^x$: ($10Ax + 7A + 10B)e^x = 100xe^x \Rightarrow 10A = 100, 7A + 10B = 0 \Rightarrow A = 10, B = -7.$ Thus, $y_p = (10x - 7)e^x.$ 9 pts. Method 2: Variation of Parameters. From y_c we obtain two independent solutions of the homogeneous d.e. $y_1 = e^{-4x}$ and $y_2 = e^{-x}.$ 1 pt. The Wronskian is given by $W(x) = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} = \begin{vmatrix} e^{-4x} & e^{-x} \\ -4e^{-4x} & -e^{-x} \end{vmatrix} = e^{-4x} (-e^{-x}) - (-4e^{-4x})e^{-x} = 3e^{-5x}.$ 1 pt. $u_1 = \int \frac{-y_2 f(x)}{W(x)} dx = -\int \frac{e^{-x} (100xe^x)}{3e^{-5x}} dx = -\frac{100}{3} \int [xe^{5x}] dx = -\frac{100}{3} \left[\frac{1}{25} (5x - 1)e^{5x} \right] = -\frac{4}{3} (5x - 1)e^{5x}$ using formula 46 from the integral table, with u = 5x. 4 pts.

$$u_{2} = \int \frac{y_{1}f(x)}{W(x)} dx = \int \frac{e^{-4x} (100xe^{x})}{3e^{-5x}} dx = \frac{100}{3} \int \left[xe^{2x}\right] dx = \frac{100}{3} \left[\frac{1}{4} (2x-1)e^{2x}\right] = \frac{25}{3} (2x-1)e^{2x}$$

using formula 46 from the integral table, with $u = 2x$. [4 pts.]

Therefore,
$$y_p = u_1 y_1 + u_2 y_2 = \left[-\frac{4}{3} (5x-1) e^{5x} \right] e^{-4x} + \left[\frac{25}{3} (2x-1) e^{2x} \right] e^{-x} = (10x-7) e^x 5 \text{ pts.}$$

Step 3. $y = y_c + y_p$, so $y = c_1 e^{-4x} + c_2 e^{-x} (10x - 7) e^x$. 3 pts.

Step 4. Use the initial conditions to determine the values of the arbitrary constants in the general solution.

$$y = y = c_1 e^{-4x} + c_2 e^{-x} + (10x - 7) e^x \Rightarrow y' = -4c_1 e^{-4x} - c_2 e^{-x} + 10e^x + (10x - 7) e^x = -4c_1 e^{-4x} - c_2 e^{-x} + (10x + 3) e^x.$$

$$y(0) = 4 \Rightarrow -4 = c_1 e^0 + c_2 e^0 - 7e^0 = c_1 + c_2 - 7 \Rightarrow c_1 + c_2 = 3$$

$$y'(0) = 0 \Rightarrow 0 = -4c_1 e^0 - c_2 e^0 + 3e^0 = -4c_1 - c_2 + 3 \Rightarrow -4c_1 - c_2 = -3.c_1 + c_2 = 3, -4c_1 - c_2 = -3 \Rightarrow c_1 = 0, c_2 = 3$$
 [2 pts.] Therefore,
$$y = 3e^{-x} + (10x - 7) e^x$$

- **Problem 3. (20 points)** Consider a free, undamped mass-spring system with mass m = 1 kg and spring constant k = 9 N/m. Suppose x(0) = -1 and x'(0) = -3.
 - a. Find the position function x(t).

The d.e. describing a mass-spring system is $mx'' + cx' + kx = F_e(t)$. 3 pts. In this problem, c = 0 and $F_e(t) = 0$ so the d.e. becomes x'' + 9x = 0. 3 pts. The characteristic equation is $r^2 + 9 = 0$ so $r^2 = -9 \Rightarrow r = \pm 3i \Rightarrow x = c_1 \cos(3t) + c_2 \sin(3t)$ 10 pts. $x(0) = -1 \Rightarrow -1 = c_1 \cos(0) + c_2 \sin(0) = c_1$ 1 pt. so $x = -\cos(3t) + c_2 \sin(3t) \Rightarrow x' = 3\sin(3t) + 3c_2 \cos(3t)$. $x'(0) = -3 \Rightarrow -3 = 3\sin(0) + 3c_2 \cos(0) = 3c_2 \Rightarrow c_2 = -1$. 1 pt. Therefore, $x = -\cos(3t) - \sin(3t)$

b. Express your solution from part a in the form $x = C \cos(\omega_0 t - \alpha)$.

$$x = c_1 \cos(3t) + c_2 \sin(3t) \text{ where } c_1 = -1 \text{ and } c_2 = -1$$

$$C = \sqrt{c_1^2 + c_2^2} = \sqrt{(-1)^2 + (-1)^2} = \sqrt{2} \boxed{1 \text{ pt.}}$$

Because $c_1 < 0$ we have $\alpha = \pi + \tan^{-1}(c_2/c_1) = \pi + \tan^{-1}((-1)/(-1)) = \pi + \pi/4 = 5\pi/4.$ 1 pt.
Therefore, $\boxed{x = \sqrt{2}\cos(3t - 5\pi/4)}$

Problem 4. (20 points) Consider an RLC circuit with inductance L = 1 henry, resistance $R = 10\Omega$, capacitance C = 1/9 farad, and applied voltage $E(t) = 60\cos(3t)$ volts. Find the steady periodic current $I_{sp}(t)$.

The d.e. describing an RLC circuit is $LQ'' + RQ' + \frac{Q}{C} = E(t)$. 2 pts. In this problem, the d.e. becomes $Q'' + 10Q' + 9Q = 60\cos(3t)$. 1 pt.

The steady periodic solution is the particular solution. 3 pts. Since the nonhomogeneous term $60 \cos(3t)$ is a cosine, we should guess that Q_p is a combination of a cosine and a sine with the same frequency: $Q_p = A \cos(3t) + B \sin(3t)$. 5 pts. (No part of this guess will duplicate part of Q_c because Q_c is a transient term containing decaying exponential functions.) $Q = A \cos(3t) + B \sin(3t) \Rightarrow Q' = -3A \sin(3t) + 3B \cos(3t) \Rightarrow$ $Q'' = -9A \cos(3t) - 9B \sin(3t)$. Therefore, the left side of the d.e. is $Q'' + 10Q' + 9Q = -9A \cos(3t) - 9B \sin(3t) + 10 [-3A \sin(3t) + 3B \cos(3t)] + 9 [A \cos(3t) + B \sin(3t)]$ $= 30B \cos(3t) - 30A \sin(3t)$. We want this to equal the nonhomogeneous term $60 \cos(3t)$: $30B \cos(3t) - 30A \sin(3t) = 60 \cos(3t) \Rightarrow 30B = 60, -30A = 0 \Rightarrow A = 0$ and B = 2. Therefore, $Q_{\rm sp} = 2 \sin(3t)$. 8 pts. Current is the derivative of Q, so $I_{\rm sp} = 6 \cos(3t)$ 1 pt.