Problem 1. (20 pts.) Solve the following differential equations.
a. $(8$ pts. $) y^{\prime \prime}+6 y^{\prime}+10 y=0$

Characteristic equation: $r^{2}+6 r+10=0 \Rightarrow r=\frac{-6 \pm \sqrt{6^{2}-4(1)(10)}}{2(1)}=\frac{-6 \pm \sqrt{-4}}{2}=\frac{-6 \pm 2 i}{2}=-3 \pm i$
4 pts. Therefore, $y=c_{1} e^{-3 x} \cos (x)+c_{2} e^{-3 x} \sin (x)$ pts.
b. (12 pts.) $y^{(4)}-4 y^{\prime \prime}=0$.

Characteristic equation: $r^{4}-4 r^{2}=0 \Rightarrow r^{2}\left(r^{2}-4\right)=0 \Rightarrow r^{2}(r+2)(r-2)=0 \Rightarrow$
$r=0$ (double root) or $r=-2$ or $r=2$. 4 pts. Therefore, $y=c_{1} e^{0 x}+c_{2} x e^{0 x}+c_{3} e^{-2 x}+c_{4} e^{2 x}$,
or $y=c_{1}+c_{2} x+c_{3} e^{-2 x}+c_{4} e^{2 x}$

8 pts .

Problem 2. (25 pts.) Solve the following initial value problem:

$$
y^{\prime \prime}+5 y^{\prime}+4 y=100 x e^{x}, y(0)=-4, y^{\prime}(0)=0 .
$$

Step 1. Find y_{c} by solving the homogeneous d.e. $y^{\prime \prime}+5 y^{\prime}+4 y=0$.
Characteristic equation: $r^{2}+5 r+4=0 \Rightarrow(r+4)(r+1)=0 \Rightarrow r=-4$ or $r=-1$.
Therefore, $y_{c}=c_{1} e^{-4 x}+c_{2} e^{-x}$. 5 pts.
Step 2. Find y_{p}.
Method 1: Undetermined Coefficients. Since the nonhomogeneous term $100 x e^{x}$ in the given d.e. is a polynomial of degree 1 times an exponential function, we should guess that y_{p} is a polynomial of degree 1 times an exponential function:
$y_{p}=(A x+B) e^{x}$. 4 pts. No term in this guess duplicates a term in y_{c}, so there is no need to
modify this guess. 2 pts. $y=(A x+B) e^{x} \Rightarrow y^{\prime}=A e^{x}+(A x+B) e^{x}=(A x+A+B) e^{x} \Rightarrow$
$y^{\prime \prime}=A e^{x}+(A x+A+B) e^{x}=(A x+2 A+B) e^{x}$. Therefore, the left side of the d.e. is
$y^{\prime \prime}+5 y^{\prime}+4 y=(A x+2 A+B) e^{x}+5\left[(A x+A+B) e^{x}\right]+4\left[(A x+B) e^{x}\right]=(10 A x+7 A+10 B) e^{x}$.
We want this to equal the nonhomogeneous term $100 x e^{x}$:
$(10 A x+7 A+10 B) e^{x}=100 x e^{x} \Rightarrow 10 A=100,7 A+10 B=0 \Rightarrow A=10, B=-7$. Thus, $y_{p}=(10 x-7) e^{x} .9$ pts.
Method 2: Variation of Parameters. From y_{c} we obtain two independent solutions of the homogeneous d.e: $y_{1}=e^{-4 x}$ and $y_{2}=e^{-x}$. 1 pt. The Wronskian is given by
$W(x)=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|=\left|\begin{array}{cc}e^{-4 x} & e^{-x} \\ -4 e^{-4 x} & -e^{-x}\end{array}\right|=e^{-4 x}\left(-e^{-x}\right)-\left(-4 e^{-4 x}\right) e^{-x}=3 e^{-5 x} .1 \mathrm{pt}$.
$u_{1}=\int \frac{-y_{2} f(x)}{W(x)} d x=-\int \frac{e^{-x}\left(100 x e^{x}\right)}{3 e^{-5 x}} d x=-\frac{100}{3} \int\left[x e^{5 x}\right] d x=-\frac{100}{3}\left[\frac{1}{25}(5 x-1) e^{5 x}\right]=-\frac{4}{3}(5 x-1) e^{5 x}$
using formula 46 from the integral table, with $u=5 x$. 4 pts.
$u_{2}=\int \frac{y_{1} f(x)}{W(x)} d x=\int \frac{e^{-4 x}\left(100 x e^{x}\right)}{3 e^{-5 x}} d x=\frac{100}{3} \int\left[x e^{2 x}\right] d x=\frac{100}{3}\left[\frac{1}{4}(2 x-1) e^{2 x}\right]=\frac{25}{3}(2 x-1) e^{2 x}$
using formula 46 from the integral table, with $u=2 x$. 4 pts.
Therefore, $y_{p}=u_{1} y_{1}+u_{2} y_{2}=\left[-\frac{4}{3}(5 x-1) e^{5 x}\right] e^{-4 x}+\left[\frac{25}{3}(2 x-1) e^{2 x}\right] e^{-x}=(10 x-7) e^{x} 5$ pts.

Step 3. $y=y_{c}+y_{p}$, so $y=c_{1} e^{-4 x}+c_{2} e^{-x}(10 x-7) e^{x}$. 3 pts.
Step 4. Use the initial conditions to determine the values of the arbitrary constants in the general solution.
$y=y=c_{1} e^{-4 x}+c_{2} e^{-x}+(10 x-7) e^{x} \Rightarrow y^{\prime}=-4 c_{1} e^{-4 x}-c_{2} e^{-x}+10 e^{x}+(10 x-7) e^{x}=-4 c_{1} e^{-4 x}-$ $c_{2} e^{-x}+(10 x+3) e^{x}$.
$y(0)=4 \Rightarrow-4=c_{1} e^{0}+c_{2} e^{0}-7 e^{0}=c_{1}+c_{2}-7 \Rightarrow c_{1}+c_{2}=3$
$y^{\prime}(0)=0 \Rightarrow 0=-4 c_{1} e^{0}-c_{2} e^{0}+3 e^{0}=-4 c_{1}-c_{2}+3 \Rightarrow-4 c_{1}-c_{2}=-3 . c_{1}+c_{2}=3,-4 c_{1}-c_{2}=$ $-3 \Rightarrow c_{1}=0, c_{2}=3$ pts. Therefore, $y=3 e^{-x}+(10 x-7) e^{x}$

Problem 3. (20 points) Consider a free, undamped mass-spring system with mass $m=1 \mathrm{~kg}$ and spring constant $k=9 \mathrm{~N} / \mathrm{m}$. Suppose $x(0)=-1$ and $x^{\prime}(0)=-3$.
a. Find the position function $x(t)$.

The d.e. describing a mass-spring system is $m x^{\prime \prime}+c x^{\prime}+k x=F_{\mathrm{e}}(t)$. 3 pts.
In this problem, $c=0$ and $F_{\mathrm{e}}(t)=0$ so the d.e. becomes $x^{\prime \prime}+9 x=0$. 3 pts .
The characteristic equation is $r^{2}+9=0$ so $r^{2}=-9 \Rightarrow r= \pm 3 i \Rightarrow x=c_{1} \cos (3 t)+c_{2} \sin (3 t)$ 10 pts.
$x(0)=-1 \Rightarrow-1=c_{1} \cos (0)+c_{2} \sin (0)=c_{1} 1$ pt. $\mathrm{so} x=-\cos (3 t)+c_{2} \sin (3 t) \Rightarrow x^{\prime}=3 \sin (3 t)+3 c_{2} \cos (3 t)$.
$x^{\prime}(0)=-3 \Rightarrow-3=3 \sin (0)+3 c_{2} \cos (0)=3 c_{2} \Rightarrow c_{2}=-1$. 1 pt . Therefore, $x=-\cos (3 t)-\sin (3 t)$
b. Express your solution from part a in the form $x=C \cos \left(\omega_{0} t-\alpha\right)$.
$x=c_{1} \cos (3 t)+c_{2} \sin (3 t)$ where $c_{1}=-1$ and $c_{2}=-1$
$C=\sqrt{c_{1}^{2}+c_{2}^{2}}=\sqrt{(-1)^{2}+(-1)^{2}}=\sqrt{2} 1 \mathrm{pt}$.
Because $c_{1}<0$ we have $\alpha=\pi+\tan ^{-1}\left(c_{2} / c_{1}\right)=\pi+\tan ^{-1}((-1) /(-1))=\pi+\pi / 4=5 \pi / 4$. 1 pt.
Therefore, $x=\sqrt{2} \cos (3 t-5 \pi / 4)$

Problem 4. (20 points) Consider an RLC circuit with inductance $L=1$ henry, resistance $R=10 \Omega$, capacitance $C=1 / 9$ farad, and applied voltage $E(t)=60 \cos (3 t)$ volts. Find the steady periodic current $I_{s p}(t)$.

The d.e. describing an RLC circuit is $L Q^{\prime \prime}+R Q^{\prime}+\frac{Q}{C}=E(t)$. 2 pts.
In this problem, the d.e. becomes $Q^{\prime \prime}+10 Q^{\prime}+9 Q=60 \cos (3 t) .1 \mathrm{pt}$.
The steady periodic solution is the particular solution. 3 pts. Since the nonhomogeneous term $60 \cos (3 t)$ is a cosine, we should guess that Q_{p} is a combination of a cosine and a sine with the same frequency: $Q_{p}=A \cos (3 t)+B \sin (3 t)$. 5 pts. (No part of this guess will duplicate part of Q_{c} because Q_{c} is a transient term containing decaying exponential functions.)
$Q=A \cos (3 t)+B \sin (3 t) \Rightarrow Q^{\prime}=-3 A \sin (3 t)+3 B \cos (3 t) \Rightarrow$
$Q^{\prime \prime}=-9 A \cos (3 t)-9 B \sin (3 t)$. Therefore, the left side of the d.e. is
$Q^{\prime \prime}+10 Q^{\prime}+9 Q=-9 A \cos (3 t)-9 B \sin (3 t)+10[-3 A \sin (3 t)+3 B \cos (3 t)]+9[A \cos (3 t)+B \sin (3 t)]$ $=30 B \cos (3 t)-30 A \sin (3 t)$.
We want this to equal the nonhomogeneous term $60 \cos (3 t)$:
$30 B \cos (3 t)-30 A \sin (3 t)=60 \cos (3 t) \Rightarrow 30 B=60,-30 A=0 \Rightarrow A=0$ and $B=2$. Therefore, $Q_{\mathrm{sp}}=2 \sin (3 t) .8$ pts. Current is the derivative of Q, so $I_{\mathrm{sp}}=6 \cos (3 t) \quad 1 \mathrm{pt}$.

