Problem 1. 20 points Consider the autonomous differential equation $\frac{d x}{d t}=-x^{2}-2 x+8$.
a. Find all critical points (equilibrium solutions) of this d.e.

$-x^{2}-2 x+8=0 \Rightarrow-\left(x^{2}+2 x-8\right)=0 \Rightarrow-(x+4)(x-2)=0 \Rightarrow$
the equilibrium solutions are $x=-4$ and $x=2$

b. Draw the phase line (phase diagram) for this d.e. 8 pts.

The two equilibrium solutions divide the phase line into 3 intervals: $x>2,-4<x<2$, and $x<-4$.
$\left.\frac{d x}{d t}\right|_{x=3}=-(3+4)(3-2)<0$, so the direction arrow points down for $x>2$.
$\left.\frac{d x}{d t}\right|_{x=0} ^{x=3}=-(0+4)(0-2)>0$, so the direction arrow points up for $0<x<2$.
$\left.\frac{d x}{d t}\right|_{x=-5}=-(-5+4)(-5-2)<0$, so the direction arrow points down for $x<-4$.

c. Determine whether each critical point is stable or unstable.

From the phase line we can see that 2 is stable and -4 is unstable. 2 pts.
d. If $x(0)=0$, what value will $x(t)$ approach as t increases?

Since 0 lies in the interval $-4<x<2$, we can see from the phase line that $x(t) \rightarrow 2$ as t increases. 3 pts.
e. Sketch typical solution curves of the given d.e. Please draw these curves in a graph separate from your phase line. Be sure to include graphs of all equilibrium solutions, and be sure to label the axes. 4 pts.
See the figure above.

Problem 2. (20 points) Solve the following differential equations:
a. $y^{\prime \prime}+8 y^{\prime}+16 y=0$

Characteristic equation: $r^{2}+8 r+16=0 \Rightarrow(r+4)^{2}=0 \Rightarrow$
$r=-4$ (repeated root). 4 pts. Therefore, $y=c_{1} e^{-4 x}+c_{2} x e^{-4 x} 6 \mathrm{pts}$.
b. $y^{\prime \prime}+8 y^{\prime}+12 y=0$

Characteristic equation: $r^{2}+8 r+12=0 \Rightarrow(r+6)(r+2)=0 \Rightarrow$
$r=-6$ or $r=-2.4$ pts. Therefore, $y=c_{1} e^{-6 x}+c_{2} e^{-2 x}$. 6 pts.

Problem 3. (20 points) Solve the following initial value problem.

$$
x^{2}+2 y^{2}-2 x y \frac{d y}{d x}=0, \quad y(1)=2
$$

$x^{2}+2 y^{2}-2 x y \frac{d y}{d x}=0 \Rightarrow \frac{d y}{d x}=\frac{x^{2}+2 y^{2}}{2 x y} . d y / d x$ equals a rational function, and every term has the same degree (2). Therefore, this d.e. is homogeneous. 4 pts.
We introduce the new variable $v=y / x$. In the d.e. we replace $\frac{d y}{d x}$ by $v+x \frac{d v}{d x}$ and we replace y by $x v$:

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{x^{2}+2 y^{2}}{2 x y} \Rightarrow \underbrace{v+x \frac{d v}{d x}=\frac{x^{2}+2(x v)^{2}}{2 x(x v)}}_{4 \text { pts. }}=\frac{x^{2}\left(1+2 v^{2}\right)}{2 x^{2} v}=\frac{1}{2 v}+v \Rightarrow \underbrace{x \frac{d v}{d x}=\frac{1}{2 v}}_{3 \mathrm{pts} .} \\
& \underbrace{\Rightarrow 2 v d v=\frac{1}{x} d x}_{2 \text { pts. }} \Rightarrow \int 2 v d v=\int \frac{1}{x} d x \Rightarrow \underbrace{v^{2}=\ln (x)+c}_{3 \text { pts. }} \Rightarrow \underbrace{\left(\frac{y}{x}\right)^{2}=\ln (x)+c}_{2 \text { pts. }}
\end{aligned}
$$

The initial condition $y(1)=2 \Rightarrow(2 / 1)^{2}=\ln (1)+c \Rightarrow c=42 \mathrm{pts}$.
Therefore, $\left(\frac{y}{x}\right)^{2}=\ln (x)+4 \Rightarrow y=x \sqrt{\ln (x)+4}$.

Problem 4. (20 points) Solve the following initial value problem.

$$
x^{2}+2 y^{2}+[4 x y-6 y] \frac{d y}{d x}=0, \quad y(3)=1
$$

This d.e. is not separable, linear, or homogeneous. Test whether the d.e. is exact:
$\underbrace{x^{2}+2 y^{2}}_{M}+\underbrace{(4 x y-6 y)}_{N} \frac{d y}{d x}=0$
$\frac{\partial M}{\partial y}=\frac{\partial}{\partial y}\left[x^{2}+2 y^{2}\right]=4 y .1$ pt. $\frac{\partial N}{\partial x}=\frac{\partial}{\partial x}[4 x y-6 y]=4 y .1 \mathrm{pt}$.
Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, the d.e. is exact. 3 pts. Therefore, the solution of the d.e. is $f(x, y)=c$, where the function f satisfies the conditions $\frac{\partial f}{\partial x}=M=x^{2}+2 y^{2}$ and $\frac{\partial f}{\partial y}=N=4 x y-6 y$. $\frac{\partial f}{\partial x}=x^{2}+2 y^{2} \Rightarrow f=\int\left(x^{2}+2 y^{2}\right) \quad \partial x=\frac{x^{3}}{3}+2 x y^{2}+g(y) 6$ pts.
$\Rightarrow \frac{\partial f}{\partial y}=\frac{\partial}{\partial y}\left[\frac{x^{3}}{3}+2 x y^{2}+g(y)\right]=4 x y+g^{\prime}(y)$
But $\frac{\partial f}{\partial y}=N=4 x y-6 y \Rightarrow 4 x y+g^{\prime}(y)=4 x y-6 y \Rightarrow g^{\prime}(y)=-6 y \Rightarrow g(y)=-3 y^{2} \Rightarrow$ $f=\frac{x^{3}}{3}+2 x y^{2}-3 y^{2} 6$ pts.

Therefore, the solution of the d.e. is $\frac{x^{3}}{3}+2 x y^{2}-3 y^{2}=c 2 \mathrm{pts}$.
$y(3)=1 \Rightarrow \frac{3^{3}}{3}+2(3)(1)^{2}-3(1)=c \Rightarrow c=12.1 \mathrm{pt}$.
Therefore, the solution of the initial value problem is $\frac{x^{3}}{3}+2 x y^{2}-3 y^{2}=12$
Problem 5. (10 points) Let P denote the population of a colony of tribbles. Suppose that the birth rate β (number of births per week per tribble) is proportional to P and that the death rate δ (number of deaths per week per tribble) equals 0 . Suppose the initial population is 2 , and after one week the population is 3 . What is the population after 2 weeks?
$\frac{d P}{d t}=\beta P-\delta P=(k P) P-(0) P=k P^{2} .3$ pts.
This is a separable d.e: $\frac{d P}{d t}=k P^{2} \Rightarrow \frac{d P}{P^{2}}=k d t \Rightarrow \int P^{-2} d P=\int k d t \Rightarrow-P^{-1}=k t+c$.
4 pts .
$P(0)=2 \Rightarrow-2^{-1}=-k(0)+c \Rightarrow c=-\frac{1}{2} \Rightarrow-P^{-1}=k t-\frac{1}{2} \Rightarrow P^{-1}=\frac{1}{2}-k t 1 \mathrm{pt}$.
$P(1)=3 \Rightarrow 3^{-1}=\frac{1}{2}-k(1) \Rightarrow \Rightarrow k=\frac{1}{6} .1 \mathrm{pt}$.
Therefore, $(P(2))^{-1}=\frac{1}{2}-\left(\frac{1}{6}\right)(2)=\frac{1}{6} \Rightarrow P(2)=6$ tribbles.

