Problem 1. (20 pts.) Solve the following differential equations.

a. (8 pts.) y'' - 4y' + 8y = 0

Characteristic equation:
$$r^2 - 4r + 8 = 0 \Rightarrow r = \frac{-(-4) \pm \sqrt{(-4)^2 - 4(1)(8)}}{2(1)} = \frac{4 \pm \sqrt{-16}}{2} = \frac{4 \pm 4i}{2} = 2 \pm 2i$$

[4 pts.] Therefore, $y = c_1 e^{2x} \cos(2x) + c_2 e^{2x} \sin(2x)$] [4 pts.]

b. (12 pts.) $y^{(4)} + 9y'' = 0$

Characteristic equation: $r^4 + 9r^2 = 0 \Rightarrow r^2(r^2 + 9) = 0$. $r^2 + 9 = 0 \Rightarrow r^2 = -9 \Rightarrow r = \pm 3i$. Therefore, the roots of the characteristic equation are r = 0 (double root) and $r = \pm 3i = 0 \pm 3i$. [4 pts.] Therefore, $y = c_1 e^{0x} + c_2 x e^{0x} + c_3 e^{0x} \cos(3x) + c_4 e^{0x} \sin(3x)$, or

$y = c_1 + c_2 x + c_3 \cos(3x) + c_4 \sin(3x)$	8 pts.
---	--------

Problem 2. (25 pts.) Solve the following initial value problem:

$$y'' + y' - 6y = 16xe^x, \ y(0) = -2, \ y'(0) = 0.$$

Step 1. Find y_c by solving the homogeneous d.e. y'' + y' - 6y = 0. Characteristic equation: $r^2 + r - 6 = 0 \Rightarrow (r+3)(r-2) = 0 \Rightarrow r = -3$ or r = 2. Therefore, $y_c = c_1 e^{-3x} + c_2 e^{2x}$. 5 pts.

Step 2. Find y_p .

Method 1: Undetermined Coefficients. Since the nonhomogeneous term $16xe^x$ in the given d.e. is a polynomial of degree 1 times an exponential function, we should guess that y_p is a polynomial of degree 1 times an exponential function:

 $y_p = (Ax + B) e^x$. 4 pts. No term in this guess duplicates a term in y_c , so there is no need to modify this guess. 2 pts. $y = (Ax + B) e^x \Rightarrow y' = Ae^x + (Ax + B) e^x = (Ax + A + B) e^x \Rightarrow$ $y'' = Ae^x + (Ax + A + B) e^x = (Ax + 2A + B) e^x$. Therefore, the left side of the d.e. is $y'' + y' - 6y = (Ax + 2A + B) e^x + [(Ax + A + B) e^x] - 6[(Ax + B) e^x] = (-4Ax + 3A - 4B) e^x$. We want this to equal the nonhomogeneous term $16xe^x$:

$$(-4Ax + 3A - 4B)e^x = 16xe^x \Rightarrow -4A = 16, \ 3A - 4B = 0 \Rightarrow A = -4, \ B = -3.$$
 Thus, $y_p = (-4x - 3)e^x$. 9 pts.

Method 2: Variation of Parameters. From y_c we obtain two independent solutions of the homogeneous d.e: $y_1 = e^{-3x}$ and $y_2 = e^{2x}$. I pt. The Wronskian is given by

$$W(x) = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} = \begin{vmatrix} e^{-3x} & e^{2x} \\ -3e^{-3x} & 2e^{2x} \end{vmatrix} = e^{-3x} \left(2e^{2x}\right) - \left(-3e^{-3x}\right)e^{2x} = 5e^{-x}.$$
 [1 pt.]
$$u_1 = \int \frac{-y_2 f(x)}{W(x)} dx = -\int \frac{e^{2x} (16xe^x)}{5e^{-x}} dx = -\frac{16}{5} \int \left[xe^{4x}\right] dx = -\frac{16}{5} \left[\frac{1}{16} (4x-1)e^{4x}\right] = -\frac{1}{5} (4x-1)e^{4x}$$
using formula 46 from the integral table, with $u = 4x.$ [4 pts.]

$$u_{2} = \int \frac{y_{1}f(x)}{W(x)} dx = \int \frac{e^{-3x} (16xe^{x})}{5e^{-x}} dx = \frac{16}{5} \int [xe^{-x}] dx = \frac{16}{5} [(-x-1)e^{-x}] = -\frac{16}{5} (x+1)e^{-x}$$

using formula 46 from the integral table, with $u = -x$. [4 pts.]

Therefore,
$$y_p = u_1 y_1 + u_2 y_2 = \left[-\frac{1}{5} (4x - 1) e^{4x} \right] e^{-3x} + \left[-\frac{16}{5} (x + 1) e^{-x} \right] e^{2x} = (-4x - 3) e^x$$
 5 pts.

Step 3. $y = y_c + y_p$, so $y = c_1 e^{-3x} + c_2 e^{2x} + (-4x - 3) e^x$. 3 pts. Step 4. Use the initial conditions to determine the values of the arbitrary constants in the general

solution. $y = y = c_1 e^{-3x} + c_2 e^{2x} + (-4x - 3) e^x \Rightarrow y' = -3c_1 e^{-3x} + 2c_2 e^{2x} - 4e^x + (-4x - 3) e^x = -3c_1 e^{-3x} + 2c_2 e^{2x} + (-4x - 7) e^x.$ $y(0) = -2 \Rightarrow -2 = c_1 e^0 + c_2 e^0 - 3e^0 = c_1 + c_2 - 3 \Rightarrow c_1 + c_2 = 1$ $y'(0) = 0 \Rightarrow 0 = -3c_1 e^0 + 2c_2 e^0 - 7e^0 = -3c_1 + 2c_2 - 7 \Rightarrow -3c_1 + 2c_2 = 7.c_1 + c_2 = 1, -3c_1 + 2c_2 = 7$ $7 \Rightarrow c_1 = -1, c_2 = 2 \text{ [2 pts.] Therefore, } \text{[} y = -e^{-3x} + 2e^{2x} + (-4x - 3) e^x \text{]}$

- **Problem 3.** (20 pts.) Consider a free, undamped mass-spring system with mass m = 1 kg and spring constant k = 25 N/m. Suppose x(0) = -1 and x'(0) = -5.
 - a. Find the position function x(t).

The d.e. describing a mass-spring system is $mx'' + cx' + kx = F_e(t)$. 3 pts. In this problem, c = 0 and $F_e(t) = 0$ so the d.e. becomes x'' + 25x = 0. 3 pts. The characteristic equation is $r^2 + 25 = 0$ so $r^2 = -25 \Rightarrow r = \pm 5i \Rightarrow x = c_1 \cos(5t) + c_2 \sin(5t)$ 10 pts. $x(0) = -1 \Rightarrow -1 = c_1 \cos(0) + c_2 \sin(0) = c_1$ 1 pt. so $x = -\cos(5t) + c_2 \sin(5t) \Rightarrow x' = 5\sin(5t) + 5c_2 \cos(5t)$. $x'(0) = -5 \Rightarrow -5 = 5\sin(0) + 5c_2 \cos(0) = 5c_2 \Rightarrow c_2 = -1$. 1 pt. Therefore, $x = -\cos(5t) - \sin(5t)$

b. Express your solution from part a in the form $x = C \cos(\omega_0 t - \alpha)$.

$$x = c_1 \cos(5t) + c_2 \sin(5t) \text{ where } c_1 = -1 \text{ and } c_2 = -1$$

$$C = \sqrt{c_1^2 + c_2^2} = \sqrt{(-1)^2 + (-1)^2} = \sqrt{2} \boxed{1 \text{ pt.}}$$
Because $c_1 < 0$ we have $\alpha = \pi + \tan^{-1}(c_2/c_1) = \pi + \tan^{-1}((-1)/(-1)) = \pi + \pi/4 = 5\pi/4.$ 1 pt.
Therefore, $\boxed{x = \sqrt{2}\cos(5t - 5\pi/4)}$

Problem 4. (20 points) Consider an RLC circuit with inductance L = 1 henry, resistance $R = 10\Omega$, capacitance C = 1/9 farad, and applied voltage $E(t) = 60 \sin(3t)$ volts. Find the steady periodic current $I_{sp}(t)$.

The d.e. describing an RLC circuit is $LQ'' + RQ' + \frac{Q}{C} = E(t)$. 2 pts. In this problem, the d.e. becomes $Q'' + 10Q' + 9Q = 60\cos(3t)$. 1 pt.

The steady periodic solution is the particular solution. 3 pts. Since the nonhomogeneous term $60 \sin(3t)$ is a sine, we should guess that Q_p is a combination of a sine and a cosine with the same frequency: $Q_p = A \sin(3t) + B \cos(3t)$. 5 pts. (No part of this guess will duplicate part of Q_c because Q_c is a transient term containing decaying exponential functions.) $Q = A \sin(3t) + B \cos(3t) \Rightarrow Q' = 3A \cos(3t) - 3B \sin(3t) \Rightarrow$ $Q'' = -9A \sin(3t) - 9B \cos(3t)$. Therefore, the left side of the d.e. is $Q'' + 10Q' + 9Q = -9A \sin(3t) - 9B \cos(3t) + 10 [3A \cos(3t) - 3B \sin(3t)] + 9 [A \sin(3t) + B \cos(3t)]$ $= -30B \sin(3t) + 30A \cos(3t)$. We want this to equal the nonhomogeneous term $60 \sin(3t)$: $-30B \sin(3t) + 30A \cos(3t) = 60 \sin(3t) \Rightarrow -30B = 60, \ 30A = 0 \Rightarrow A = 0 \ \text{and} \ B = -2$. Therefore,

 $Q_{\rm sp} = -2\cos(3t)$. 8 pts. Current is the derivative of Q, so $I_{\rm sp} = 6\sin(3t)$ 1 pt.