Problem 1. (20 pts.) Solve the following differential equations.
a. $(8 \mathrm{pts}.) y^{\prime \prime}-4 y^{\prime}+8 y=0$

Characteristic equation: $r^{2}-4 r+8=0 \Rightarrow r=\frac{-(-4) \pm \sqrt{(-4)^{2}-4(1)(8)}}{2(1)}=\frac{4 \pm \sqrt{-16}}{2}=\frac{4 \pm 4 i}{2}=2 \pm 2 i$
4 pts. Therefore, $y=c_{1} e^{2 x} \cos (2 x)+c_{2} e^{2 x} \sin (2 x)$
4 pts.
b. $(12$ pts. $) y^{(4)}+9 y^{\prime \prime}=0$

Characteristic equation: $r^{4}+9 r^{2}=0 \Rightarrow r^{2}\left(r^{2}+9\right)=0 . r^{2}+9=0 \Rightarrow r^{2}=-9 \Rightarrow r= \pm 3 i$. Therefore, the roots of the characterisic equation are $r=0$ (double root) and $r= \pm 3 i=0 \pm 3 i$. 4 pts. Therefore, $y=c_{1} e^{0 x}+c_{2} x e^{0 x}+c_{3} e^{0 x} \cos (3 x)+c_{4} e^{0 x} \sin (3 x)$, or | $y=c_{1}+c_{2} x+c_{3} \cos (3 x)+c_{4} \sin (3 x)$ |
| :---: |
| 8 pts. |

Problem 2. (25 pts.) Solve the following initial value problem:

$$
y^{\prime \prime}+y^{\prime}-6 y=16 x e^{x}, y(0)=-2, y^{\prime}(0)=0 .
$$

Step 1. Find y_{c} by solving the homogeneous d.e. $y^{\prime \prime}+y^{\prime}-6 y=0$.
Characteristic equation: $r^{2}+r-6=0 \Rightarrow(r+3)(r-2)=0 \Rightarrow r=-3$ or $r=2$.
Therefore, $y_{c}=c_{1} e^{-3 x}+c_{2} e^{2 x}$. 5 pts.
Step 2. Find y_{p}.
Method 1: Undetermined Coefficients. Since the nonhomogeneous term $16 x e^{x}$ in the given d.e. is a polynomial of degree 1 times an exponential function, we should guess that y_{p} is a polynomial of degree 1 times an exponential function:
$y_{p}=(A x+B) e^{x}$. 4 pts. No term in this guess duplicates a term in y_{c}, so there is no need to modify this guess. 2 pts. $y=(A x+B) e^{x} \Rightarrow y^{\prime}=A e^{x}+(A x+B) e^{x}=(A x+A+B) e^{x} \Rightarrow$ $y^{\prime \prime}=A e^{x}+(A x+A+B) e^{x}=(A x+2 A+B) e^{x}$. Therefore, the left side of the d.e. is $y^{\prime \prime}+y^{\prime}-6 y=(A x+2 A+B) e^{x}+\left[(A x+A+B) e^{x}\right]-6\left[(A x+B) e^{x}\right]=(-4 A x+3 A-4 B) e^{x}$. We want this to equal the nonhomogeneous term $16 x e^{x}$:
$(-4 A x+3 A-4 B) e^{x}=16 x e^{x} \Rightarrow-4 A=16,3 A-4 B=0 \Rightarrow A=-4, B=-3$. Thus, $y_{p}=$ $(-4 x-3) e^{x} .9$ pts.
Method 2: Variation of Parameters. From y_{c} we obtain two independent solutions of the homogeneous d.e: $y_{1}=e^{-3 x}$ and $y_{2}=e^{2 x}$. 1 pt. The Wronskian is given by
$W(x)=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|=\left|\begin{array}{cc}e^{-3 x} & e^{2 x} \\ -3 e^{-3 x} & 2 e^{2 x}\end{array}\right|=e^{-3 x}\left(2 e^{2 x}\right)-\left(-3 e^{-3 x}\right) e^{2 x}=5 e^{-x} .1 \mathrm{pt}$.
$u_{1}=\int \frac{-y_{2} f(x)}{W(x)} d x=-\int \frac{e^{2 x}\left(16 x e^{x}\right)}{5 e^{-x}} d x=-\frac{16}{5} \int\left[x e^{4 x}\right] d x=-\frac{16}{5}\left[\frac{1}{16}(4 x-1) e^{4 x}\right]=-\frac{1}{5}(4 x-1) e^{4 x}$
using formula 46 from the integral table, with $u=4 x$. 4 pts.
$u_{2}=\int \frac{y_{1} f(x)}{W(x)} d x=\int \frac{e^{-3 x}\left(16 x e^{x}\right)}{5 e^{-x}} d x=\frac{16}{5} \int\left[x e^{-x}\right] d x=\frac{16}{5}\left[(-x-1) e^{-x}\right]=-\frac{16}{5}(x+1) e^{-x}$ using formula 46 from the integral table, with $u=-x$. 4 pts.
Therefore, $y_{p}=u_{1} y_{1}+u_{2} y_{2}=\left[-\frac{1}{5}(4 x-1) e^{4 x}\right] e^{-3 x}+\left[-\frac{16}{5}(x+1) e^{-x}\right] e^{2 x}=(-4 x-3) e^{x} 5 \mathrm{pts}$.

Step 3. $y=y_{c}+y_{p}$, so $y=c_{1} e^{-3 x}+c_{2} e^{2 x}+(-4 x-3) e^{x}$. 3 pts.
Step 4. Use the initial conditions to determine the values of the arbitrary constants in the general solution.
$y=y=c_{1} e^{-3 x}+c_{2} e^{2 x}+(-4 x-3) e^{x} \Rightarrow y^{\prime}=-3 c_{1} e^{-3 x}+2 c_{2} e^{2 x}-4 e^{x}+(-4 x-3) e^{x}=-3 c_{1} e^{-3 x}+$ $2 c_{2} e^{2 x}+(-4 x-7) e^{x}$.
$y(0)=-2 \Rightarrow-2=c_{1} e^{0}+c_{2} e^{0}-3 e^{0}=c_{1}+c_{2}-3 \Rightarrow c_{1}+c_{2}=1$
$y^{\prime}(0)=0 \Rightarrow 0=-3 c_{1} e^{0}+2 c_{2} e^{0}-7 e^{0}=-3 c_{1}+2 c_{2}-7 \Rightarrow-3 c_{1}+2 c_{2}=7 . c_{1}+c_{2}=1,-3 c_{1}+2 c_{2}=$
$7 \Rightarrow c_{1}=-1, c_{2}=2$ pts. Therefore, $y=-e^{-3 x}+2 e^{2 x}+(-4 x-3) e^{x}$

Problem 3. (20 pts.) Consider a free, undamped mass-spring system with mass $m=1 \mathrm{~kg}$ and spring constant $k=25 \mathrm{~N} / \mathrm{m}$. Suppose $x(0)=-1$ and $x^{\prime}(0)=-5$.
a. Find the position function $x(t)$.

The d.e. describing a mass-spring system is $m x^{\prime \prime}+c x^{\prime}+k x=F_{\mathrm{e}}(t) .3$ pts.
In this problem, $c=0$ and $F_{\mathrm{e}}(t)=0$ so the d.e. becomes $x^{\prime \prime}+25 x=0.3$ pts.
The characteristic equation is $r^{2}+25=0$ so $r^{2}=-25 \Rightarrow r= \pm 5 i \Rightarrow x=c_{1} \cos (5 t)+c_{2} \sin (5 t)$ 10 pts.
$x(0)=-1 \Rightarrow-1=c_{1} \cos (0)+c_{2} \sin (0)=c_{1} 1$ pt. so $x=-\cos (5 t)+c_{2} \sin (5 t) \Rightarrow x^{\prime}=5 \sin (5 t)+5 c_{2} \cos (5 t)$.
$x^{\prime}(0)=-5 \Rightarrow-5=5 \sin (0)+5 c_{2} \cos (0)=5 c_{2} \Rightarrow c_{2}=-1$. 1 pt . Therefore, $x=-\cos (5 t)-\sin (5 t)$
b. Express your solution from part a in the form $x=C \cos \left(\omega_{0} t-\alpha\right)$.
$x=c_{1} \cos (5 t)+c_{2} \sin (5 t)$ where $c_{1}=-1$ and $c_{2}=-1$
$C=\sqrt{c_{1}^{2}+c_{2}^{2}}=\sqrt{(-1)^{2}+(-1)^{2}}=\sqrt{2} 1 \mathrm{pt}$.
Because $c_{1}<0$ we have $\alpha=\pi+\tan ^{-1}\left(c_{2} / c_{1}\right)=\pi+\tan ^{-1}((-1) /(-1))=\pi+\pi / 4=5 \pi / 4$. 1 pt.
Therefore, $x=\sqrt{2} \cos (5 t-5 \pi / 4)$

Problem 4. (20 points) Consider an RLC circuit with inductance $L=1$ henry, resistance $R=10 \Omega$, capacitance $C=1 / 9$ farad, and applied voltage $E(t)=60 \sin (3 t)$ volts. Find the steady periodic current $I_{s p}(t)$.

The d.e. describing an RLC circuit is $L Q^{\prime \prime}+R Q^{\prime}+\frac{Q}{C}=E(t)$. 2 pts.
In this problem, the d.e. becomes $Q^{\prime \prime}+10 Q^{\prime}+9 Q=60 \cos (3 t) .1 \mathrm{pt}$.
The steady periodic solution is the particular solution. 3 pts. Since the nonhomogeneous term $60 \sin (3 t)$ is a sine, we should guess that Q_{p} is a combination of a sine and a cosine with the same frequency: $Q_{p}=A \sin (3 t)+B \cos (3 t)$. 5 pts. (No part of this guess will duplicate part of Q_{c} because Q_{c} is a transient term containing decaying exponential functions.)
$Q=A \sin (3 t)+B \cos (3 t) \Rightarrow Q^{\prime}=3 A \cos (3 t)-3 B \sin (3 t) \Rightarrow$
$Q^{\prime \prime}=-9 A \sin (3 t)-9 B \cos (3 t)$. Therefore, the left side of the d.e. is
$Q^{\prime \prime}+10 Q^{\prime}+9 Q=-9 A \sin (3 t)-9 B \cos (3 t)+10[3 A \cos (3 t)-3 B \sin (3 t)]+9[A \sin (3 t)+B \cos (3 t)]$ $=-30 B \sin (3 t)+30 A \cos (3 t)$.
We want this to equal the nonhomogeneous term $60 \sin (3 t)$:
$-30 B \sin (3 t)+30 A \cos (3 t)=60 \sin (3 t) \Rightarrow-30 B=60,30 A=0 \Rightarrow A=0$ and $B=-2$. Therefore,
$Q_{\mathrm{sp}}=-2 \cos (3 t) .8$ pts. Current is the derivative of Q, so $1 I_{\mathrm{sp}}=6 \sin (3 t) 1 \mathrm{pt}$.

