MATH. 2360 Engineering Differential Equations

Solutions to Sample Problems for Exam \# 3

Problem 1. Solve the following differential equations.
a. $y^{\prime \prime}+2 y^{\prime}+2 y=0$.

Characteristic equation: $r^{2}+2 r+2=0 \Rightarrow$
$r=\frac{-2 \pm \sqrt{2^{2}-4(1)(2)}}{2(1)}=\frac{-2 \pm \sqrt{-4}}{2}=\frac{-2 \pm 2 i}{2}=-1 \pm 1 i$
Therefore, $y=c_{1} e^{-x} \cos (1 x)+c_{2} e^{-x} \sin (1 x)$, or $y=c_{1} e^{-x} \cos (x)+c_{2} e^{-x} \sin (x)$
b. $y^{(3)}-10 y^{\prime \prime}+25 y^{\prime}=0$.

Characteristic equation: $r^{3}-10 r^{2}+25 r=0 \Rightarrow r\left(r^{2}-10 r+25\right)=0 \Rightarrow r(r-5)^{2}=0 \Rightarrow$ $r=0$ or $r=5$ (double root). Therefore, $y=c_{1} e^{0 x}+c_{2} e^{5 x}+c_{3} x e^{5 x}$, or
$y=c_{1}+c_{2} e^{5 x}+c_{3} x e^{5 x}$
c. $y^{\prime \prime}-6 y^{\prime}+25 y=0$.

Characteristic equation: $r^{2}-6 r+25=0 \Rightarrow$
$r=\frac{-(-6) \pm \sqrt{(-6)^{2}-4(1)(25)}}{2(1)}=\frac{6 \pm \sqrt{-64}}{2}=\frac{6 \pm 8 i}{2}=3 \pm 4 i$
Therefore, $y=c_{1} e^{3 x} \cos (4 x)+c_{2} e^{3 x} \sin (4 x)$
d. $y^{(4)}+4 y^{(3)}+4 y^{\prime \prime}=0$.

Characteristic equation: $r^{4}+4 r^{3}+4 r^{2}=0 \Rightarrow r^{2}\left(r^{2}+4 r+4\right)=0 \Rightarrow r^{2}(r+2)^{2}=0 \Rightarrow$ $r=0$ or $r=-2$ (both double roots). Therefore, $y=c_{1} e^{0 x}+c_{2} x e^{0 x}+c_{3} e^{-2 x}+c_{4} x e^{-2 x}$, or

$$
y=c_{1}+c_{2} x+c_{3} e^{-2 x}+c_{4} x e^{-2 x}
$$

Problem 2. Solve the following initial value problem:

$$
y^{\prime \prime}+2 y^{\prime}+y=4 x+8 e^{x}, y(0)=2, y^{\prime}(0)=-2 .
$$

Step 1. Find y_{c} by solving the homogeneous d.e. $y^{\prime \prime}+2 y^{\prime}+y=0$.
Characteristic equation: $r^{2}+2 r+1=0 \Rightarrow(r+1)^{2}=0 \Rightarrow r=-1$ double root.
Therefore, $y_{c}=c_{1} e^{-x}+c_{2} x e^{-x}$.
Step 2. Find y_{p}.
Method 1: Undetermined Coefficients. Since the nonhomogeneous term $4 x+8 e^{x}$ in the given d.e. is the sum of a polynomial of degree one and an exponential function, we should guess that y_{p} is the sum of a polynomial of degree one and an exponential function: $y_{p}=$ $A x+B+C e^{x}$. No term in this guess duplicates a term in y_{c}, so there is no need to modify
this guess. $y=A x+B+C e^{x} \Rightarrow y^{\prime}=A+C e^{x} \Rightarrow y^{\prime \prime}=C e^{x}$. Therefore, the left side of the d.e. is $y^{\prime \prime}+2 y^{\prime}+y=C e^{x}+2\left[A+C e^{x}\right]+A x+B+C e^{x}=A x+(B+2 A)+4 C e^{x}$. We want this to equal the nonhomogeneous term $4 x+8 e^{x}: A x+(B+2 A)+4 C e^{x}=4 x+8 e^{x} \Rightarrow A=$ $4, B+2 A=0,4 C=8 \Rightarrow A=4, B=-8, C=2$. Thus, $y_{p}=4 x-8+2 e^{x}$.
Method 2: Variation of Parameters. From y_{c} we obtain two independent solutions of the homogeneous d.e: $y_{1}=e^{-x}$ and $y_{2}=x e^{-x}$. The Wronskian is given by
$W(x)=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|=\left|\begin{array}{cc}e^{-x} & x e^{-x} \\ -e^{-x} & e^{-x}-x e^{-x}\end{array}\right|=e^{-x}\left(e^{-x}-x e^{-x}\right)-\left(-e^{-x}\right) x e^{-x}=e^{-2 x}$.
$u_{1}=\int \frac{-y_{2} f(x)}{W(x)} d x=-\int \frac{x e^{-x}\left(4 x+8 e^{x}\right)}{e^{-2 x}} d x=-\int\left[4 x^{2} e^{x}+8 x e^{2 x}\right] d x=$
$-4\left[x^{2} e^{x}-2 \int x e^{x} d x\right]-2 \int(2 x) e^{2 x} d(2 x)=-4\left[x^{2} e^{x}-2(x-1) e^{x}\right]-2(2 x-1) e^{2 x}=$
$\left(-4 x^{2}+8 x-8\right) e^{x}+(-4 x+2) e^{2 x}$ using formulas 46 and 47 from the table of integrals.
$u_{2}=\int \frac{y_{1} f(x)}{W(x)} d x=\int \frac{e^{-x}\left(4 x+8 e^{x}\right)}{e^{-2 x}} d x=\int\left[4 x e^{x}+8 e^{2 x}\right] d x=4\left[(x-1) e^{x}\right]+4 e^{2 x}$ using
formula 46 from the table of integrals.
Therefore, $y_{p}=u_{1} y_{1}+u_{2} y_{2}=\left[\left(-4 x^{2}+8 x-8\right) e^{x}+(-4 x+2) e^{2 x}\right] e^{-x}+\left[4\left((x-1) e^{x}\right)+4 e^{2 x}\right] x e^{-x}=$
$-4 x^{2}+8 x-8+(-4 x+2) e^{x}+4(x-1) x+4 x e^{x}=4 x-8+2 e^{x}$
Step 3. $y=y_{c}+y_{p}$, so $y=c_{1} e^{-x}+c_{2} x e^{-x}+4 x-8+2 e^{x}$.
Step 4. Use the initial conditions to determine the values of the arbitrary constants in the general solution.
$y=c_{1} e^{-x}+c_{2} x e^{-x}+4 x-8+2 e^{x} \Rightarrow y^{\prime}=-c_{1} e^{-x}+c_{2}\left[e^{-x}-x e^{-x}\right]+4+2 e^{x}$.
$y(0)=2 \Rightarrow 2=c_{1} e^{0}+c_{2}(0) e^{0}+4(0)-8+2 e^{0}=c_{1}-6 \Rightarrow c_{1}=8$
$y^{\prime}(0)=-2 \Rightarrow-2=-c_{1} e^{0}+c_{2}\left[e^{0}-(0) e^{0}\right]+4+2 e^{0}=-c_{1}+c_{2}+6 \Rightarrow c_{2}=c_{1}-8=0$

Therefore, $y=8 e^{-x}+4 x-8+2 e^{x}$

Problem 3. Solve the following initial value problem:

$$
y^{\prime \prime}-2 y^{\prime}=15 \sin (x), y(0)=0, y^{\prime}(0)=-3 .
$$

Step 1. Find y_{c} by solving the homogeneous d.e. $y^{\prime \prime}-2 y^{\prime}=0$.
Characteristic equation: $r^{2}-2 r=0 \Rightarrow r(r-2)=0 \Rightarrow r=0$ or $r=2$.
Therefore, $y_{c}=c_{1} e^{0 x}+c_{2} e^{2 x}=c_{1}+c_{2} e^{2 x}$.
Step 2. Find y_{p}.
Method 1: Undetermined Coefficients. Since the nonhomogeneous term $15 \sin (x)$ in the given d.e. is a sine function, we should guess that y_{p} is a combination of a cosine function and a sine function with the same coefficient of x as in the nonhomogeneous term: $y_{p}=$ $A \cos (x)+B \sin (x)$. No term in this guess duplicates a term in y_{c}, so there is no need to modify the guess. $y=A \cos (x)+B \sin (x) \Rightarrow y^{\prime}=-A \sin (x)+B \cos (x) \Rightarrow y^{\prime \prime}=$ $-A \cos (x)-B \sin (x)$. Therefore, the left side of the d.e. is $y^{\prime \prime}-2 y^{\prime}=-A \cos (x)-B \sin (x)-$ $2[-A \sin (x)+B \cos (x)]=[-A-2 B] \cos (x)+[2 A-B] \sin (x)$. We want this to equal the nonhomogeneous term $15 \sin (x)$ so $2 A-B=15,-A-2 B=0 \Rightarrow A=6, B=-3$. Thus, $y_{p}=6 \cos (x)-3 \sin (x)$.

Method 2: Variation of Parameters. From y_{c} we obtain two independent solutions of the homogeneous d.e: $y_{1}=1$ and $y_{2}=e^{2 x}$. The Wronskian is given by
$W(x)=\left|\begin{array}{cc}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|=\left|\begin{array}{cc}1 & e^{2 x} \\ 0 & 2 e^{2 x}\end{array}\right|=(1)\left(2 e^{2 x}\right)-(0) e^{-2 x}=2 e^{2 x}$.
$u_{1}=\int \frac{-y_{2} f(x)}{W(x)} d x=-\int \frac{e^{2 x}(15 \sin (x))}{2 e^{2 x}} d x=-\frac{15}{2} \int \sin (x) d x=\frac{15}{2} \cos (x)$
$u_{2}=\int \frac{y_{1} f(x)}{W(x)} d x=\int \frac{(1)(15 \cos (x))}{2 e^{2 x}} d x=\frac{15}{2} \int\left[e^{-2 x} \sin (x)\right] d x=\frac{15}{2}\left\{\frac{e^{-2 x}}{(-2)^{2}+1^{2}}[-2 \sin (x)-\sin (x)]\right\}$
$=-\frac{15}{2} e^{-2 x}[2 \sin (x)+\cos (x)]$ using formula 49 from the Table of Integrals.
Therefore, $y_{p}=u_{1} y_{1}+u_{2} y_{2}=\left[\frac{15}{2} \cos (x)\right](1)+\left\{-\frac{3}{2} e^{-2 x}[2 \sin (x)+\cos (x)]\right\} e^{2 x}=$
$\frac{15}{2} \cos (x)-3 \sin (x)-\frac{3}{2} \cos (x)=6 \cos (x)-3 \sin (x)$.
Step 3. $y=y_{c}+y_{p}$, so $y=c_{1}+c_{2} e^{2 x}+6 \cos (x)-3 \sin (x)$.
Step 4. Use the initial conditions to determine the value of c_{1} and c_{2}.
$y=c_{1}+c_{2} e^{2 x}+6 \cos (x)-3 \sin (x) \Rightarrow y^{\prime}=2 c_{2} e^{2 x}-6 \sin (x)-3 \cos (x)$.
$y(0)=0 \Rightarrow 0=c_{1}+c_{2} e^{0}+6 \cos (0)-3 \sin (0)=c_{1}+c_{2}+6 \Rightarrow c_{1}+c_{2}=-6$.
$y^{\prime}(0)=-3 \Rightarrow-3=2 c_{2} e^{0}-6 \sin (0)-3 \cos (0)=2 c_{2}-3 \Rightarrow c_{2}=0 . c_{1}+c_{2}=-6 \Rightarrow c_{1}=-6-c_{2}=-6$.
Therefore, $y=-6+6 \cos (x)-3 \sin (x)$

Problem 4. Consider an RLC circuit with inductance $L=1$ henry, resistance $R=2 \Omega$, capacitance $C=1 / 16$ farad, and applied voltage $E(t)=32 \cos (4 t)$ volts. Find the steady periodic current $I_{s p}(t)$.

The d.e. describing an RLC circuit is $L Q^{\prime \prime}+R Q^{\prime}+\frac{Q}{C}=E(t)$.
In this problem, the d.e. becomes $Q^{\prime \prime}+2 Q^{\prime}+16 Q=32 \cos (4 t)$.
The steady periodic solution is the particular solution. Since the nonhomogeneous term $32 \cos (4 t)$ is a cosine, we should guess that Q_{p} is a combination of a cosine and a sine with the same frequency: $Q_{p}=A \cos (4 t)+B \sin (4 t)$. (No part of this guess will duplicate part of Q_{c} because Q_{c} is a transient term containing decaying exponential functions.)
$Q=A \cos (4 t)+B \sin (4 t) \Rightarrow Q^{\prime}=-4 A \sin (4 t)+4 B \cos (4 t) \Rightarrow$
$Q^{\prime \prime}=-16 A \cos (4 t)-16 B \sin (4 t)$. Therefore, the left side of the d.e. is
$Q^{\prime \prime}+2 Q^{\prime}+16 Q=-16 A \cos (4 t)-16 B \sin (4 t)+2[-4 A \sin (4 t)+4 B \cos (4 t)]+16[A \cos (4 t)+B \sin (4 t)]$
$=8 B \cos (4 t)-8 A \sin (4 t)$.
We want this to equal the nonhomogeneous term $32 \cos (4 t)$:
$8 B \cos (4 t)-8 A \sin (4 t)=32 \cos (4 t) \Rightarrow 8 B=32,-8 A=0 \Rightarrow A=0$ and $B=4$. Therefore,
$Q_{\mathrm{sp}}=4 \sin (4 t)$. Current is the derivative of Q, so $I_{\mathrm{sp}}=16 \cos (4 t)$

Problem 5. Consider a free (unforced), damped mass-spring system with mass $m=1 \mathrm{~kg}$, damping constant $c=6 \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}$, and spring constant $k=10 \mathrm{~N} / \mathrm{m}$. Assume that $x(0)=-1$ and $x^{\prime}(0)=0$.
a. Find the position function $x(t)$.

The d.e. describing a mass-spring system is $m x^{\prime \prime}+c x^{\prime}+k x=F_{\mathrm{e}}(t)$.
In this problem, the d.e. becomes $x^{\prime \prime}+6 x^{\prime}+10 x=0$.

The characteristic equation is $r^{2}+6 r+10=0 \Rightarrow$
$r=\frac{-6 \pm \sqrt{6^{2}-4(1)(10)}}{2(1)}=\frac{-6 \pm \sqrt{-4}}{2}=\frac{-6 \pm 2 i}{2}=-3 \pm i$
Therefore, $x=c_{1} e^{-3 t} \cos (t)+c_{2} e^{-3 t} \sin (t)$ so $x^{\prime}=c_{1}\left[-3 e^{-t} \cos (t)-e^{-3 t} \sin (t)\right]+c_{2}\left[-3 e^{-t} \sin (t)+e^{-3 t}\right.$
$x(0)=-1 \Rightarrow-1=c_{1} e^{0} \cos (0)+c_{2} e^{0} \sin (0)=c_{1} \Rightarrow c_{1}=-1$.
$x^{\prime}(0)=0 \Rightarrow 0=c_{1}\left[-3 e^{0} \cos (0)-e^{0} \sin (0)\right]+c_{2}\left[-3 e^{0} \sin (0)+e^{0} \cos (0)\right]=-3 c_{1}+c_{2} \Rightarrow c_{2}=3 c_{1}=-3$
Therefore $x=-e^{-3 t} \cos (t)-3 e^{-3 t} \sin (t)$
b. Express your solution from part a in the form $x=C e^{-p t} \cos \left(\omega_{1} t-\alpha\right)$
$C=\sqrt{c_{1}^{2}+c_{2}^{2}}=\sqrt{(-1)^{2}+(-3)^{2}}=\sqrt{10}$
Because $c_{1}<0$ we have $\alpha=\pi+\tan ^{-1}\left(c_{2} / c_{1}\right)=\pi+\tan ^{-1}(3)$
Therefore, $x=\sqrt{10} e^{-3 t} \cos \left(t-\left(\pi+\tan ^{-1}(3)\right)\right)$
c. Is this system overdamped, underdamped, or critically damped?

The characteristic equation has complex roots, so
the system is underdamped.

