Problem 1. (10 points)

Is $y(x)=x^{2}+1$ is a solution of the d.e. $y y^{\prime}=x^{2}+y$? Why or why not?
Left side of d.e: $y=x^{2}+1 \Rightarrow y^{\prime}=2 x \Rightarrow y y^{\prime}=\left(x^{2}+1\right)(2 x)=2 x^{3}+2 x$. 4 pts.
Right side of d.e: $y=x^{2}+1 \Rightarrow x^{2}+y=x^{2}+\left(x^{2}+1\right)=2 x^{2}+1.3 \mathrm{pts}$.
Left side \neq right side, so $y(x)=x^{2}+1$ is not a solution of the d.e. $y y^{\prime}=x^{2}+y$ 而

Problem 2. (15 points)

A ball is dropped from rest (initial velocity 0) from a height of 45 meters. How long does it take the ball to reach the ground? Use the value $10 \mathrm{~m} / \mathrm{s}^{2}$ for g, the acceleration due to gravity.

Let t denote time in seconds, and let x denote the height of the ball above ground level. This is a constant-acceleration one-dimensional motion problem, so as we showed in class, $x=\frac{1}{2} a t^{2}+v_{0} t+x_{0}$. 5 pts. Here $a=-g \approx-10 \mathrm{~m} / \mathrm{s}^{2}, v_{0}=0 \mathrm{~m} / \mathrm{s}$, and $x_{0}=45 \mathrm{~m}$. Therefore, $x=-5 t^{2}+45.5 \mathrm{pts}$. Ground level corresponds to $x=0$. Setting $x=0$ in the position function gives $0=-5 t^{2}+45 \Rightarrow t^{2}=9 \Rightarrow$ $t=3$ seconds .5 pts .

Problem 3. (25 points)

Solve the following initial value problem:

$$
x \frac{d y}{d x}+2 y=6 x, \quad y(1)=5 .
$$

This is a linear d.e. because y and $d y / d x$ appear just to the first power, multiplied by functions of x alone or by constants. 5 pts.
First write the equation in standard form:
$x \frac{d y}{d x}+2 y=6 x \Rightarrow \frac{d y}{d x}+\left(\frac{2}{x}\right) y=63 \mathrm{pts}$.
Next, find the integrating factor: $\rho(x)=e^{\int 2 / x d x}=e^{2 \ln (x)}=x^{2} .6$ pts.
Multiply both sides of the standard form of the d.e. by the integrating factor:
$x^{2}\left[\frac{d y}{d x}+\left(\frac{2}{x}\right) y\right]=x^{2}(6) \Rightarrow x^{2} \frac{d y}{d x}+2 x y=6 x^{2} .2 \mathrm{pts}$.
Use the Product Rule backwards to rewrite the d.e. as $\frac{d}{d x}\left[x^{2} y\right]=6 x^{2} .4 \mathrm{pts}$.
Integrating both sides, we obtain $x^{2} y=\int 6 x^{2} d x=2 x^{3}+c .3$ pts.
$y(1)=5 \Rightarrow 1^{2}(5)=2(1)^{3}+c \Rightarrow c=32 \mathrm{pts}$.
Therefore, $x^{2} y=2 x^{3}+3$, so $y=2 x+3 x^{-2}$.

Problem 4. (25 points)

Solve the following initial value problem:

$$
x \frac{d y}{d x}=\frac{1+2 x}{2 y}, \quad y(1)=2 .
$$

This is a separable d.e. 5 pts.
$x \frac{d y}{d x}=\frac{1+2 x}{2 y} \Rightarrow 2 y d y=\left(\frac{1+2 x}{x}\right) d x .5$ pts.
$\Rightarrow 2 y d y=\left(\frac{1}{x}+2\right) d x \Rightarrow \int 2 y d y=\int\left(\frac{1}{x}+2\right) d x \Rightarrow y^{2}=\ln (x)+2 x+c$. 12 pts.
$y(1)=2 \Rightarrow 2^{2}=\ln (1)+2(1)+c \Rightarrow c=23$ pts.
$\Rightarrow y^{2}=\ln (x)+2 x+2 \Rightarrow y=\sqrt{\ln (x)+2 x+2}$.

Problem 5. (15 points)

A tank initially contains 50 liters of water in which 100 grams of salt are dissolved. A salt solution containing 5 grams of salt per liter is pumped into the tank at the rate of 8 liters per minute, and the well-mixed solution is pumped out of the tank at the rate of 5 liters per minute.

Let t denote time (in minutes), and let x denote the amount of salt in the tank at time t (in grams). Write down the differential equation $\left(\frac{d x}{d t}=\right.$ something $)$ and initial condition describing this mixing problem.

DO NOT SOLVE THE INITIAL VALUE PROBLEM. JUST WRITE DOWN THE D.E. AND INITIAL CONDITION.

$\frac{d x}{d t}=$ rate in - rate out 3 pts .
$=($ flow rate in $)($ concentration in $)-($ flow rate out $)($ concentration out $), 3$ pts. so
$\frac{d x}{d t}=\underbrace{\left(8 \frac{\mathrm{~L}}{\min }\right)}_{1 \mathrm{pt.}} \underbrace{\left(5 \frac{\mathrm{gm}}{\mathrm{L}}\right)}_{1 \mathrm{pt} .}-\underbrace{\left(5 \frac{\mathrm{~L}}{\min }\right)}_{1 \mathrm{pt} .} \underbrace{\left(\frac{x \mathrm{gm}}{(50+3 t) \mathrm{L}}\right)}_{5 \mathrm{pts} .}$.
(The volume in the tank at time t is initial volume $+t$ (flow rate in - flow rate out) $=50+(8-5) t$ liters.)
Initially there are 100 gm of salt in the tank, so $x(0)=1001 \mathrm{pt}$.

Therefore, the initial value problem describing this mixing problem is

