Problem 1. (10 points)

Is $y(x)=x^{3}+2$ is a solution of the d.e. $y y^{\prime}=x^{5}+y$? Why or why not?
Left side of d.e: $y=x^{3}+2 \Rightarrow y^{\prime}=3 x^{2} \Rightarrow y y^{\prime}=\left(x^{3}+2\right)\left(3 x^{2}\right)=3 x^{5}+6 x^{2} .4$ pts.
Right side of d.e: $y=x^{3}+2 \Rightarrow x^{5}+y=x^{5}+\left(x^{3}+2\right)=x^{5}+x^{3}+2.3$ pts.
Left side \neq right side, so $y(x)=x^{3}+2$ is not a solution of the d.e. $y y^{\prime}=x^{5}+y$ 而

Problem 2. (15 points)

A ball is dropped from rest (initial velocity 0) from a height of 80 meters. How long does it take the ball to reach the ground? Use the value $10 \mathrm{~m} / \mathrm{s}^{2}$ for g, the acceleration due to gravity.

Let t denote time in seconds, and let x denote the height of the ball above ground level. This is a constant-acceleration one-dimensional motion problem, so as we showed in class, $x=\frac{1}{2} a t^{2}+v_{0} t+x_{0}$. 5 pts. Here $a=-g \approx-10 \mathrm{~m} / \mathrm{s}^{2}, v_{0}=0 \mathrm{~m} / \mathrm{s}$, and $x_{0}=80 \mathrm{~m}$. Therefore, $x=-5 t^{2}+80.5 \mathrm{pts}$. Ground level corresponds to $x=0$. Setting $x=0$ in the position function gives $0=-5 t^{2}+80 \Rightarrow t^{2}=16 \Rightarrow$ $t=4$ seconds. 5 pts .

Problem 3. (25 points)

Solve the following initial value problem:

$$
x \frac{d y}{d x}+3 y=5 x^{2}, \quad y(1)=3 .
$$

This is a linear d.e. because y and $d y / d x$ appear just to the first power, multiplied by functions of x alone or by constants. 5 pts.
First write the equation in standard form:
$x \frac{d y}{d x}+3 y=5 x^{2} \Rightarrow \frac{d y}{d x}+\left(\frac{3}{x}\right) y=5 x 3 \mathrm{pts}$.
Next, find the integrating factor: $\rho(x)=e^{\int 3 / x d x}=e^{3 \ln (x)}=x^{3} .6$ pts.
Multiply both sides of the standard form of the d.e. by the integrating factor:
$x^{3}\left[\frac{d y}{d x}+\left(\frac{3}{x}\right) y\right]=x^{3}(5 x) \Rightarrow x^{3} \frac{d y}{d x}+3 x^{2} y=5 x^{4}$. 2pts.
Use the Product Rule backwards to rewrite the d.e. as $\frac{d}{d x}\left[x^{3} y\right]=5 x^{4} .4 \mathrm{pts}$.
Integrating both sides, we obtain $x^{3} y=\int 5 x^{4} d x=x^{5}+c .3$ pts.
$y(1)=3 \Rightarrow 1^{3}(3)=(1)^{5}+c \Rightarrow c=22$ pts.
Therefore, $x^{3} y=x^{5}+2$, so $y=x^{2}+2 x^{-3}$.

Problem 4. (25 points)

Solve the following initial value problem:

$$
x \frac{d y}{d x}=\frac{x-1}{3 y^{2}}, \quad y(1)=1 .
$$

This is a separable d.e. 5 pts.
$x \frac{d y}{d x}=\frac{x-1}{3 y^{2}} \Rightarrow 3 y^{2} d y=\left(\frac{x-1}{x}\right) d x .5$ pts.
$\Rightarrow 3 y^{2} d y=\left(1-\frac{1}{x}\right) d x \Rightarrow \int 3 y^{2} d y=\int\left(1-\frac{1}{x}\right) d x \Rightarrow y^{3}=x-\ln (x)+c .12 \mathrm{pts}$.
$y(1)=1 \Rightarrow 1^{3}=1-\ln (1)+c \Rightarrow c=03$ pts.
$\Rightarrow y^{3}=x-\ln (x) \Rightarrow y=(x-\ln (x))^{1 / 3}$.

Problem 5. (15 points)

A tank initially contains 40 liters of water in which 200 grams of salt are dissolved. A salt solution containing 20 grams of salt per liter is pumped into the tank at the rate of 10 liters per minute, and the well-mixed solution is pumped out of the tank at the rate of 5 liters per minute.

Let t denote time (in minutes), and let x denote the amount of salt in the tank at time t (in grams). Write down the differential equation $\left(\frac{d x}{d t}=\right.$ something $)$ and initial condition describing this mixing problem.

DO NOT SOLVE THE INITIAL VALUE PROBLEM. JUST WRITE DOWN THE D.E. AND INITIAL CONDITION.

$\frac{d x}{d t}=$ rate in - rate out 3 pts.
$=($ flow rate in $)($ concentration in $)-($ flow rate out $)($ concentration out $), 3$ pts. so
$\frac{d x}{d t}=\underbrace{\left(10 \frac{\mathrm{~L}}{\min }\right)}_{1 \mathrm{pt} .} \underbrace{\left(20 \frac{\mathrm{gm}}{\mathrm{L}}\right)}_{1 \mathrm{pt} .}-\underbrace{\left(5 \frac{\mathrm{~L}}{\min }\right)}_{1 \mathrm{pt} .} \underbrace{\left(\frac{x \mathrm{gm}}{(40+5 t) \mathrm{L}}\right)}_{5 \mathrm{pts} .}$.
(The volume in the tank at time t is initial volume $+t$ (flow rate in - flow rate out) $=40+(10-5) t$ liters.)
Initially there are 200 gm of salt in the tank, so $x(0)=2001 \mathrm{pt}$.
Therefore, the initial value problem describing this mixing problem is $\frac{d x}{d t}=200-\frac{5 x}{40+5 t}$ with $x(0)=200$.

