Problem 1. (10 points)

Is $y(x)=\frac{1}{x}$ is a solution of the d.e. $y^{\prime}=\frac{2}{x^{2}}+y^{2}$? Why or why not?
Left side of d.e: $y=\frac{1}{x}=x^{-1} \Rightarrow y^{\prime}=-x^{-2} \cdot 3$ pts.
Right side of d.e: $y=x^{-1} \Rightarrow \frac{2}{x^{2}}+y^{2}=\frac{2}{x^{2}}+\left(x^{-1}\right)^{2}=2 x^{-2}+x^{-2}=3 x^{-2}$. 4 pts .
Left side \neq right side, so $y(x)=x^{2}+1$ is not a solution of the d.e. $y y^{\prime}=x^{2}+y$ pts.

Problem 2. (15 points)

A car travels 20 meters in 5 seconds after the driver applies the brakes. What was the initial velocity of the car? Assume the car's deceleration is constant.

Let t denote time in seconds, and let x denote the position of the car, measured in meters from the point at which the brakes were applied. This is a constant-acceleration one-dimensional motion problem, so as we showed in class, $x=\frac{1}{2} a t^{2}+v_{0} t+x_{0}$ and $v=a t+v_{0}$. 5pts. At $t=5 \mathrm{~s}$ we have $x=20 \mathrm{~m}$ and $v=0 \mathrm{~m} / \mathrm{s}: 20=\frac{1}{2} a(5)^{2}+v_{0}(5), 0=a(5)+v_{0} .6 \mathrm{pts}$. The second equation implies $a=-v_{0} / 5$. Substituting $-v_{0} / 5$ for a in the first equation gives $20=\frac{1}{2}\left(-\frac{v_{0}}{5}\right)(5)^{2}+v_{0}(5)=\frac{5 v_{0}}{2} \Rightarrow$ | $v_{0}=8 \mathrm{~m} / \mathrm{s}$ |
| :---: |

Problem 3. (25 points)

Solve the following initial value problem:

$$
x^{2} \frac{d y}{d x}=x y+4, \quad y(1)=0 .
$$

This is a linear d.e. because y and $d y / d x$ appear just to the first power, multiplied by functions of x alone. 5 pts. First write the equation in standard form:
$x^{2} \frac{d y}{d x}=x y+4 \Rightarrow \frac{d y}{d x}-\left(\frac{1}{x}\right) y=\frac{4}{x^{2}} 3$ pts.
Next, find the integrating factor: $\rho(x)=e^{\int-1 / x d x}=e^{-\ln (x)}=x^{-1} .6$ pts.
Multiply both sides of the standard form of the d.e. by the integrating factor:
$x^{-1}\left[\frac{d y}{d x}-\left(\frac{1}{x}\right) y\right]=x^{-1}\left(\frac{4}{x^{2}}\right) \Rightarrow x^{-1} \frac{d y}{d x}-x^{-2} y=4 x^{-3} .2 \mathrm{pts}$.
Use the Product Rule backwards to rewrite the d.e. as $\frac{d}{d x}\left[x^{-1} y\right]=4 x^{-3} .4 \mathrm{pts}$.
Integrating both sides, we obtain $x^{-1} y=\int 4 x^{-3} d x=-2 x^{-2}+c .3 \mathrm{pts}$.
$y(1)=0 \Rightarrow 1^{-1}(0)=-2(1)^{-2}+c \Rightarrow c=22$ pts.

Therefore, $x^{-1} y=-2 x^{-2}+2$, so $y=-2 x^{-1}+2 x$.

Problem 4. (25 points)

Solve the following initial value problem:

$$
x \frac{d y}{d x}=y^{2}-x y^{2}, \quad y(1)=1 .
$$

This is a separable d.e. 5 pts.

$$
\begin{aligned}
& x \frac{d y}{d x}=y^{2}-x y^{2} \Rightarrow x \frac{d y}{d x}=y^{2}(1-x) \Rightarrow \frac{d y}{y^{2}}=\left(\frac{1-x}{x}\right) d x .5 \mathrm{pts} . \\
& \Rightarrow \int y^{-2} d y=\int\left(\frac{1}{x}-1\right) d x \Rightarrow-y^{-1}=\ln (x)-x+c .12 \mathrm{pts.} \\
& y(1)=1 \Rightarrow-1^{-1}=\ln (1)-1+c \Rightarrow c=03 \mathrm{pts} . \\
& \Rightarrow-y^{-1}=\ln (x)-x \Rightarrow y=\frac{1}{x-\ln (x)} .
\end{aligned}
$$

Problem 5. (15 points)

A tank initially contains 80 liters of water in which 40 grams of salt are dissolved. A salt solution containing 4 grams of salt per liter is pumped into the tank at the rate of 5 liters per minute, and the well-mixed solution is pumped out of the tank at the rate of 7 liters per minute.

Let t denote time (in minutes), and let x denote the amount of salt in the tank at time t (in grams). Write down the differential equation $\left(\frac{d x}{d t}=\right.$ something $)$ and initial condition describing this mixing problem.

DO NOT SOLVE THE INITIAL VALUE PROBLEM. JUST WRITE DOWN THE D.E. AND INITIAL CONDITION.
$\frac{d x}{d t}=$ rate in - rate out 3 pts.
$=($ flow rate in $)($ concentration in $)-($ flow rate out $)($ concentration out $), 3$ pts. so
$\frac{d x}{d t}=\underbrace{\left(5 \frac{\mathrm{~L}}{\min }\right)}_{1 \mathrm{pt.}} \underbrace{\left(4 \frac{\mathrm{gm}}{\mathrm{L}}\right)}_{1 \mathrm{pt} .}-\underbrace{\left(7 \frac{\mathrm{~L}}{\min }\right)}_{1 \mathrm{pt} .} \underbrace{\left(\frac{x \mathrm{gm}}{(80-2 t) \mathrm{L}}\right)}_{5 \mathrm{pts} .}$.
(The volume in the tank at time t is initial volume $+t$ (flow rate in - flow rate out) $=80+(5-7) t$ liters.)
Initially there are 40 gm of salt in the tank, so $x(0)=401 \mathrm{pt}$. .
Therefore, the initial value problem describing this mixing problem is $\frac{d x}{d t}=20-\frac{7 x}{80-2 t}$ with $x(0)=40$.

