Problem 1. (10 points)

Is $y(x)=\frac{1}{x}$ is a solution of the d.e. $y^{\prime}=-\frac{1}{x^{2}}+y^{2}$? Why or why not?
Left side of d.e: $y=\frac{1}{x}=x^{-1} \Rightarrow y^{\prime}=-x^{-2}$. 3 pts.
Right side of d.e: $y=x^{-1} \Rightarrow-\frac{1}{x^{2}}+y^{2}=-\frac{1}{x^{2}}+\left(x^{-1}\right)^{2}=-x^{-2}+x^{-2}=0.4 \mathrm{pts}$.
Left side \neq right side, so $y(x)=x^{2}+1$ is not a solution of the d.e. $y y^{\prime}=x^{2}+y$ pts.

Problem 2. (15 points)

A car is traveling at a speed of $10 \mathrm{~m} / \mathrm{s}$ when the brakes are applied. The car continues traveling for 5 seconds before coming to a stop. How far (in meters) does the car travel during those 5 seconds? Assume the car's deceleration is constant.

Let t denote time in seconds, and let x denote the position of the car, measured in meters from the point at which the brakes were applied. This is a constant-acceleration one-dimensional motion problem, so as we showed in class, $x=\frac{1}{2} a t^{2}+v_{0} t+x_{0}=\frac{1}{2} a t^{2}+10 t$ and $v=a t+v_{0}=a t+10$. 5 pts. At $t=5 \mathrm{~s}$ we have $v=0 \mathrm{~m} / \mathrm{s}: 0=a(5)+10 \Rightarrow a=-2.5$ pts. Therefore, $x=-t^{2}+10 t$ so | $x(5)=25 \mathrm{~m}$ |
| :---: |

Problem 3. (25 points)

Solve the following initial value problem:

$$
x \frac{d y}{d x}=y^{2}-x y^{2}, \quad y(1)=1 .
$$

This is a separable d.e. 5 pts.
$x \frac{d y}{d x}=y^{2}-x y^{2} \Rightarrow x \frac{d y}{d x}=y^{2}(1-x) \Rightarrow \frac{d y}{y^{2}}=\left(\frac{1-x}{x}\right) d x$. 5pts.
$\Rightarrow \int y^{-2} d y=\int\left(x^{-1}-1\right) d x \Rightarrow-y^{-1}=\ln (x)-x+c$. 12 pts.
$y(1)=1 \Rightarrow-1^{-1}=\ln (1)-1+c \Rightarrow c=03$ pts.
$\Rightarrow-y^{-1}=\ln (x)-x \Rightarrow y=\frac{1}{x-\ln (x)}$.

Problem 4. (25 points)

Solve the following initial value problem:

$$
x^{2} \frac{d y}{d x}=2 x y+9, \quad y(1)=3
$$

This is a linear d.e. because y and $d y / d x$ appear just to the first power, multiplied by functions of x alone. 5 pts. First write the equation in standard form:
$x^{2} \frac{d y}{d x}=2 x y+9 \Rightarrow \frac{d y}{d x}-\left(\frac{2}{x}\right) y=\frac{9}{x^{2}} 3 \mathrm{pts}$.
Next, find the integrating factor: $\rho(x)=e^{\int-2 / x d x}=e^{-2 \ln (x)}=x^{-2} .6$ pts.
Multiply both sides of the standard form of the d.e. by the integrating factor:
$x^{-2}\left[\frac{d y}{d x}-\left(\frac{2}{x}\right) y\right]=x^{-2}\left(\frac{9}{x^{2}}\right) \Rightarrow x^{-2} \frac{d y}{d x}-2 x^{-3} y=9 x^{-4} .2$ pts.
Use the Product Rule backwards to rewrite the d.e. as $\frac{d}{d x}\left[x^{-2} y\right]=9 x^{-4}$. 4 pts.
Integrating both sides, we obtain $x^{-2} y=\int 9 x^{-4} d x=-3 x^{-3}+c .3 \mathrm{pts}$.
$y(1)=3 \Rightarrow 1^{-1}(3)=-3(1)^{-3}+c \Rightarrow c=62$ pts.
Therefore, $x^{-2} y=-3 x^{-3}+6$, so $y=-3 x^{-1}+6 x^{2}$.

Problem 5. (15 points)

A tank initially contains 90 liters of water in which 30 grams of salt are dissolved. A salt solution containing 5 grams of salt per liter is pumped into the tank at the rate of 7 liters per minute, and the well-mixed solution is pumped out of the tank at the rate of 4 liters per minute.

Let t denote time (in minutes), and let x denote the amount of salt in the tank at time t (in grams). Write down the differential equation $\left(\frac{d x}{d t}=\right.$ something $)$ and initial condition describing this mixing problem.

DO NOT SOLVE THE INITIAL VALUE PROBLEM. JUST WRITE DOWN THE D.E. AND INITIAL CONDITION.

$\frac{d x}{d t}=$ rate in - rate out 3 pts.
$=($ flow rate in $)($ concentration in $)-($ flow rate out $)($ concentration out $), 3$ pts. so
$\frac{d x}{d t}=\underbrace{\left(7 \frac{\mathrm{~L}}{\min }\right)}_{1 \mathrm{pt} .} \underbrace{\left(5 \frac{\mathrm{gm}}{\mathrm{L}}\right)}_{1 \mathrm{pt} .}-\underbrace{\left(4 \frac{\mathrm{~L}}{\min }\right)}_{1 \mathrm{pt} .} \underbrace{\left(\frac{x \mathrm{gm}}{(90+3 t) \mathrm{L}}\right)}_{5 \mathrm{pts} .}$.
(The volume in the tank at time t is initial volume $+t$ (flow rate in - flow rate out) $=90+(7-4) t$ liters.)
Initially there are 30 gm of salt in the tank, so $x(0)=301 \mathrm{pt}$. .
Therefore, the initial value problem describing this mixing problem is $\frac{d x}{d t}=35-\frac{4 x}{90+3 t}$ with $x(0)=30$.

