Problem 1. (20 pts.) Solve the following differential equations.

a. (8 pts.)
$$y'' + 2y' + 10y = 0$$

Characteristic equation:
$$r^2 + 2r + 10 = 0 \Rightarrow r = \frac{-2 \pm \sqrt{2^2 - 4(1)(10)}}{2(1)} = \frac{-2 \pm \sqrt{-36}}{2} = \frac{-2 \pm 6i}{2} = -1 \pm 3i$$

4 pts.

Therefore, $y = c_1 e^{-x} \cos(3x) + c_2 e^{-x} \sin(3x)$ 4 pts.

b. (12 pts.)
$$y^{(4)} + 4y'' = 0$$

Characteristic equation: $r^4 + 4r^2 = 0 \Rightarrow r^2(r^2 + 4) = 0 \Rightarrow r = \pm 2i$ or r = 0 (double root). 4 pts. Therefore, $y = c_1 e^{0x} + c_2 x e^{0x} + c_3 e^{0x} \cos(2x) + c_4 e^{0x} \sin(2x)$, or

 $y = c_1 + c_2 x + c_3 \cos(2x) + c_4 \sin(2x)$ 8 pts.

Problem 2. (25 pts.) Solve the following initial value problem:

$$y'' - 4y = 8 + 3e^{-x}, \ y(0) = 2, \ y'(0) = 3.$$

Step 1. Find y_c by solving the homogeneous d.e. y'' - 4y = 0.

Characteristic equation: $r^2 - 4 = 0 \Rightarrow (r+2)(r-2) = 0 \Rightarrow r = -2$ or r = 2. Therefore, $y_c = c_1 e^{-2x} + c_2 e^{2x}$. 5 pts.

Step 2. Find y_p .

4 pts.

Method 1: Undetermined Coefficients. Since the nonhomogeneous term $8 + 3e^{-x}$ in the given d.e. is a polynomial of degree 0 plus an exponential function, we should guess that y_p is a polynomial of degree 0 plus an exponential function:

 $y_p = A + Be^{-x}$. 4 pts. No term in this guess duplicates a term in y_c , so there is no need to modify

 $y = A + Be^{-x} \Rightarrow y' = -Be - x \Rightarrow y'' = Be^{-x}$. Therefore, the left side of the d.e. is

 $y'' - 4y = Be^{-x} - 4[A + Be^{-x}] = -4A - 3Be^{-x}$. We want this to equal the nonhomogeneous term

$$-4A - 3Be^{-x} = 8 + 3e^{-x} \Rightarrow -4A = 8$$
, $-3B = 3 \Rightarrow A = -2$, $B = -1$. Thus, $y_p = -2 - e^{-x}$.

Method 2: Variation of Parameters. From y_c we obtain two independent solutions of the homoge-

neous d.e:
$$y_1 = e^{-2x}$$
 and $y_2 = e^{2x}$. $\boxed{1 \text{ pt.}}$ The Wronskian is given by
$$W(x) = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = \begin{vmatrix} e^{-2x} & e^{2x} \\ -2e^{-2x} & 2e^{2x} \end{vmatrix} = e^{-2x} \left(2e^{2x}\right) - \left(-2e^{-2x}\right)e^{2x} = 4. \boxed{1 \text{ pt.}}$$

$$u_1 = \int \frac{-y_2 f(x)}{W(x)} dx = -\int \frac{e^{2x} \left(8 + 3e^{-x}\right)}{4} dx = -\frac{1}{4} \int 8e^{2x} + 3e^x dx = -\frac{1}{4} \left(4e^{2x} + 3e^x\right) = -e^{2x} - \frac{3}{4}e^x \boxed{4 \text{ pts.}}$$

$$u_2 = \int \frac{y_1 f(x)}{W(x)} dx = \int \frac{e^{-2x} \left(8 + 3e^{-x}\right)}{4} dx = \frac{1}{4} \int \left[8e^{-2x} + 3e^{-3x}\right] dx = \frac{1}{4} \left(-4e^{-2x} - e^{-3x}\right) = -e^{-2x} - \frac{1}{4}e^{-3x}.$$

Therefore,
$$y_p = u_1 y_1 + u_2 y_2 = \left[-e^{2x} - \frac{3}{4} e^x \right] e^{-2x} + \left[-e^{-2x} - \frac{1}{4} e^{-3x} \right] e^{2x} = -1 - \frac{3}{4} e^{-x} - 1 - \frac{1}{4} e^{-x} = -2 - e^{-x}$$
 [5 pts.]

Step 3.
$$y = y_c + y_p$$
, so $y = c_1 e^{-2x} + c_2 e^{2x} - 2 - e^{-x}$. 3 pts.

Step 4. Use the initial conditions to determine the values of the arbitrary constants in the general solution.

$$y = c_1 e^{-2x} + c_2 e^{2x} - 2 - e^{-x} \Rightarrow y' = -2c_1 e^{-2x} + 2c_2 e^{2x} + e^{-x}.$$

$$y(0) = 2 \Rightarrow 2 = c_1 e^0 + c_2 e^0 - 2 - e^0 = c_1 + c_2 - 3 \Rightarrow c_1 + c_2 = 5$$

$$y'(0) = 3 \Rightarrow 3 = -2c_1 e^0 + 2c_2 e^0 + e^0 = -2c_1 + 2c_2 + 1 \Rightarrow -2c_1 + 2c_2 = 2$$

$$c_1 + c_2 = 5, -2c_1 + 2c_2 = 2 \Rightarrow c_1 = 2, c_2 = 3$$
2 pts.

Therefore,
$$y = 2e^{-2x} + 3e^{2x} - 2 - e^{-x}$$

Problem 3. (20 points) Consider a forced, damped mass-spring system with mass m=1 kg, damping constant c=10 N·s/m, spring constant k=9 N/m, and external force $F_{\rm ext}=60\cos(3t)$ N. Find the steady-state (steady periodic) solution $x_{\rm sp}$.

The d.e. describing a mass-spring system is $mx'' + cx' + kx = F_e(t)$. 2 pts. In this problem, the d.e. becomes $x'' + 10x' + 9x = 60\cos(3t)$. 2 pts.

The steady periodic solution is the particular solution x_p . 4 pts. Since the nonhomogeneous term $60\cos(3t)$ is a cosine, we should guess that x_p is a combination of a cosine and a sine with the same frequency: $x_p = A\cos(3t) + B\sin(3t)$. 5 pts. (No part of this guess will duplicate part of x_c because x_c is a transient term containing decaying exponential functions.)

 $x = A\cos(3t) + B\sin(3t) \Rightarrow x' = -3A\sin(3t) + 3B\cos(3t) \Rightarrow x'' = -9A\cos(3t) - 9B\sin(3t)$. Therefore, the left side of the d.e. is

 $x'' + 10x' + 9x = -9A\cos(3t) - 9B\sin(3t) + 10\left[-3A\sin(3t) + 3B\cos(3t)\right] + 9\left[A\cos(3t) + B\sin(3t)\right] = 30B\cos(3t) - 30A\sin(3t).$

We want this to equal the nonhomogeneous term $60\cos(3t)$:

 $30B\cos(3t)-30A\sin(3t)=60\cos(3t) \Rightarrow 30B=60, \ -30A=0 \Rightarrow A=0 \ \mathrm{and} \ B=2.$ Therefore,

$$x_{\rm sp} = 2\sin(3t).$$
 7 pts.

Problem 4. (20 points) Solve the system $\begin{cases} x' = 2y \\ y' = 3x + y \end{cases}$

Note: x' = dx/dt and y' = dy/dt. t is the independent variable.

Take the derivative of both sides of the first d.e. in the system: $x' = 2y \Rightarrow x'' = 2y'$. The second d.e. in the system is y' = 3x + y. Therefore, x'' = 2(3x + y) = 6x + 2y. From the first d.e. in the system, 2y = x', so we have $x'' = 6x + x' \boxed{8 \text{ pts.}}$

$$x'' = 6x + x' \Rightarrow x'' - x' - 6x = 0.$$

Characteristic equation: $r^2 - r - 6 = 0 \Rightarrow (r+2)(r-3) = 0 \Rightarrow r = -2 \text{ or } r = 3 \Rightarrow x = c_1 e^{-2t} + c_2 e^{3t}$. 8 pts.

The first d.e. in the given system says y = x'/2, so $y = \left(-2c_1e^{-2t} + 3c_2e^{3t}\right)/2$. Therefore, the

solution of the given system is $x = c_1 e^{-2t} + c_2 e^{3t}, y = -c_1 e^{-2t} + \frac{3}{2} c_2 e^{3t}$ 4 pts.