Problem 1. (20 pts.) Solve the following differential equations.
a. $(8$ pts. $) y^{\prime \prime}+2 y^{\prime}+10 y=0$

Characteristic equation: $r^{2}+2 r+10=0 \Rightarrow r=\frac{-2 \pm \sqrt{2^{2}-4(1)(10)}}{2(1)}=\frac{-2 \pm \sqrt{-36}}{2}=\frac{-2 \pm 6 i}{2}=-1 \pm 3 i$
4 pts.
Therefore, $y=c_{1} e^{-x} \cos (3 x)+c_{2} e^{-x} \sin (3 x)$ 4ts.
b. $(12 \mathrm{pts}.) y^{(4)}+4 y^{\prime \prime}=0$

Characteristic equation: $r^{4}+4 r^{2}=0 \Rightarrow r^{2}\left(r^{2}+4\right)=0 \Rightarrow r= \pm 2 i$ or $r=0$ (double root).
4 pts. Therefore, $y=c_{1} e^{0 x}+c_{2} x e^{0 x}+c_{3} e^{0 x} \cos (2 x)+c_{4} e^{0 x} \sin (2 x)$, or
$y=c_{1}+c_{2} x+c_{3} \cos (2 x)+c_{4} \sin (2 x) \quad 8 \mathrm{pts}$.

Problem 2. (25 pts.) Solve the following initial value problem:

$$
y^{\prime \prime}-4 y=8+3 e^{-x}, y(0)=2, y^{\prime}(0)=3 .
$$

Step 1. Find y_{c} by solving the homogeneous d.e. $y^{\prime \prime}-4 y=0$.
Characteristic equation: $r^{2}-4=0 \Rightarrow(r+2)(r-2)=0 \Rightarrow r=-2$ or $r=2$.
Therefore, $y_{c}=c_{1} e^{-2 x}+c_{2} e^{2 x} .5$ pts.
Step 2. Find y_{p}.
Method 1: Undetermined Coefficients. Since the nonhomogeneous term $8+3 e^{-x}$ in the given d.e. is a polynomial of degree 0 plus an exponential function, we should guess that y_{p} is a polynomial of degree 0 plus an exponential function:
$y_{p}=A+B e^{-x} .4$ pts. No term in this guess duplicates a term in y_{c}, so there is no need to modify this guess. 2 pts.
$y=A+B e^{-x} \Rightarrow y^{\prime}=-B e-x \Rightarrow y^{\prime \prime}=B e^{-x}$. Therefore, the left side of the d.e. is $y^{\prime \prime}-4 y=B e^{-x}-4\left[A+B e^{-x}\right]=-4 A-3 B e^{-x}$. We want this to equal the nonhomogeneous term $8+3 e^{-x}$:
$-4 A-3 B e^{-x}=8+3 e^{-x} \Rightarrow-4 A=8,-3 B=3 \Rightarrow A=-2, B=-1$. Thus, $y_{p}=-2-e^{-x}$. 9 pts .
Method 2: Variation of Parameters. From y_{c} we obtain two independent solutions of the homogeneous d.e: $y_{1}=e^{-2 x}$ and $y_{2}=e^{2 x}$. 1 pt. The Wronskian is given by

$$
\begin{aligned}
& W(x)=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
e^{-2 x} & e^{2 x} \\
-2 e^{-2 x} & 2 e^{2 x}
\end{array}\right|=e^{-2 x}\left(2 e^{2 x}\right)-\left(-2 e^{-2 x}\right) e^{2 x}=4.1 \mathrm{pt.} \\
& u_{1}=\int \frac{-y_{2} f(x)}{W(x)} d x=-\int \frac{e^{2 x}\left(8+3 e^{-x}\right)}{4} d x=-\frac{1}{4} \int 8 e^{2 x}+3 e^{x} d x= \\
& -\frac{1}{4}\left(4 e^{2 x}+3 e^{x}\right)=-e^{2 x}-\frac{3}{4} e^{x} \sqrt[4 \mathrm{pts.}]{ } \\
& u_{2}=\int \frac{y_{1} f(x)}{W(x)} d x=\int \frac{e^{-2 x}\left(8+3 e^{-x}\right)}{4} d x=\frac{1}{4} \int\left[8 e^{-2 x}+3 e^{-3 x}\right] d x=\frac{1}{4}\left(-4 e^{-2 x}-e^{-3 x}\right)=-e^{-2 x}-\frac{1}{4} e^{-3 x} . \\
& 4 \text { pts. }
\end{aligned}
$$

Therefore, $y_{p}=u_{1} y_{1}+u_{2} y_{2}=\left[-e^{2 x}-\frac{3}{4} e^{x}\right] e^{-2 x}+\left[-e^{-2 x}-\frac{1}{4} e^{-3 x}\right] e^{2 x}=$
$-1-\frac{3}{4} e^{-x}-1-\frac{1}{4} e^{-x}=-2-e^{-x} 5 \mathrm{pts}$.
Step 3. $y=y_{c}+y_{p}$, so $y=c_{1} e^{-2 x}+c_{2} e^{2 x}-2-e^{-x}$. 3 pts.
Step 4. Use the initial conditions to determine the values of the arbitrary constants in the general solution.
$y=c_{1} e^{-2 x}+c_{2} e^{2 x}-2-e^{-x} \Rightarrow y^{\prime}=-2 c_{1} e^{-2 x}+2 c_{2} e^{2 x}+e^{-x}$.
$y(0)=2 \Rightarrow 2=c_{1} e^{0}+c_{2} e^{0}-2-e^{0}=c_{1}+c_{2}-3 \Rightarrow c_{1}+c_{2}=5$
$y^{\prime}(0)=3 \Rightarrow 3=-2 c_{1} e^{0}+2 c_{2} e^{0}+e^{0}=-2 c_{1}+2 c_{2}+1 \Rightarrow-2 c_{1}+2 c_{2}=2$
$c_{1}+c_{2}=5,-2 c_{1}+2 c_{2}=2 \Rightarrow c_{1}=2, c_{2}=32 \mathrm{pts}$.
Therefore, $y=2 e^{-2 x}+3 e^{2 x}-2-e^{-x}$

Problem 3. (20 points) Consider a forced, damped mass-spring system with mass $m=1 \mathrm{~kg}$, damping constant $c=10 \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}$, spring constant $k=9 \mathrm{~N} / \mathrm{m}$, and external force $F_{\text {ext }}=60 \cos (3 t) \mathrm{N}$. Find the steady-state (steady periodic) solution $x_{\text {sp }}$.

The d.e. describing a mass-spring system is $m x^{\prime \prime}+c x^{\prime}+k x=F_{\mathrm{e}}(t) .2$ pts.
In this problem, the d.e. becomes $x^{\prime \prime}+10 x^{\prime}+9 x=60 \cos (3 t) .2$ pts.
The steady periodic solution is the particular solution x_{p}. 4 pts. Since the nonhomogeneous term $60 \cos (3 t)$ is a cosine, we should guess that x_{p} is a combination of a cosine and a sine with the same frequency: $x_{p}=A \cos (3 t)+B \sin (3 t)$. 5 pts. (No part of this guess will duplicate part of x_{c} because x_{c} is a transient term containing decaying exponential functions.)
$x=A \cos (3 t)+B \sin (3 t) \Rightarrow x^{\prime}=-3 A \sin (3 t)+3 B \cos (3 t) \Rightarrow x^{\prime \prime}=-9 A \cos (3 t)-9 B \sin (3 t)$. Therefore, the left side of the d.e. is
$\left.x^{\prime \prime}+10 x^{\prime}+9 x=-9 A \cos (3 t)-9 B \sin (3 t)+10[-3 A \sin (3 t)+3 B \cos (3 t))\right]+9[A \cos (3 t)+B \sin (3 t)]$ $=30 B \cos (3 t)-30 A \sin (3 t)$.
We want this to equal the nonhomogeneous term $60 \cos (3 t)$:
$30 B \cos (3 t)-30 A \sin (3 t)=60 \cos (3 t) \Rightarrow 30 B=60,-30 A=0 \Rightarrow A=0$ and $B=2$. Therefore, $x_{\mathrm{sp}}=2 \sin (3 t)$. 7 pts .

Problem 4. (20 points) Solve the system $\left\{\begin{array}{l}x^{\prime}=2 y \\ y^{\prime}=3 x+y\end{array}\right.$
Note: $x^{\prime}=d x / d t$ and $y^{\prime}=d y / d t . t$ is the independent variable.
Take the derivative of both sides of the first d.e. in the system: $x^{\prime}=2 y \Rightarrow x^{\prime \prime}=2 y^{\prime}$. The second d.e. in the system is $y^{\prime}=3 x+y$. Therefore, $x^{\prime \prime}=2(3 x+y)=6 x+2 y$. From the first d.e. in the system, $2 y=x^{\prime}$, so we have $x^{\prime \prime}=6 x+x^{\prime} 8$ pts.
$x^{\prime \prime}=6 x+x^{\prime} \Rightarrow x^{\prime \prime}-x^{\prime}-6 x=0$.
Characteristic equation: $r^{2}-r-6=0 \Rightarrow(r+2)(r-3)=0 \Rightarrow r=-2$ or $r=3 \Rightarrow x=c_{1} e^{-2 t}+c_{2} e^{3 t}$. 8 pts.

The first d.e. in the given system says $y=x^{\prime} / 2$, so $y=\left(-2 c_{1} e^{-2 t}+3 c_{2} e^{3 t}\right) / 2$. Therefore, the solution of the given system is

$$
x=c_{1} e^{-2 t}+c_{2} e^{3 t}, y=-c_{1} e^{-2 t}+\frac{3}{2} c_{2} e^{3 t}
$$

