Problem 1. 20 points Consider the autonomous differential equation $\frac{d x}{d t}=x^{2}+2 x-3$.
a. Find all critical points (equilibrium solutions) of this d.e.
$x^{2}+2 x-3=0 \Rightarrow(x+3)(x-1)=0 \Rightarrow$

the equilibrium solutions are $x=-3$ and $x=1$	3 pts.

b. Draw the phase line (phase diagram) for this d.e. 8 pts.

The two equilibrium solutions divide the phase line into 3 intervals: $x>1,-3<x<1$, and $x<-3$.
$\left.\frac{d x}{d t}\right|_{x=2}=(2+3)(2-1)>0$, so the direction arrow points up for $x>1$.
$\left.\frac{d x}{d t}\right|_{x=0} ^{x=2}=(0+3)(0-1)<0$, so the direction arrow points down for $-3<x<1$.
$\left.\frac{d x}{d t}\right|_{x=-4}=(-4+3)(-4-1)>0$, so the direction arrow points up for $x<-3$.

c. Determine whether each critical point is stable or unstable.

From the phase line we can see that -3 is stable and 1 is unstable. 2 pts.
d. If $x(0)=-2$, what value will $x(t)$ approach as t increases?

Since -2 lies in the interval $-3<x<1$, we can see from the phase line that $x(t) \rightarrow-3$ as t increases. 3 pts.
e. Sketch typical solution curves of the given d.e. Please draw these curves in a graph separate from your phase line. Be sure to include graphs of all equilibrium solutions, and be sure to label the axes. 4 pts.
See the figure above.

Problem 2. (20 points) Solve the following differential equations:
a. $y^{\prime \prime}+6 y^{\prime}+5 y=0$

Characteristic equation: $r^{2}+6 r+5=0 \Rightarrow(r+5)(r+1)=0 \Rightarrow$ $r=-5$ or $r=-1.4$ pts. Therefore, $y=c_{1} e^{-5 x}+c_{2} e^{-x}$, 6 pts .
b. $y^{\prime \prime}+8 y^{\prime}+16 y=0$

Characteristic equation: $r^{2}+8 r+16=0 \Rightarrow(r+4)^{2}=0 \Rightarrow$
$r=-4$ repeated root. 4 pts . Therefore, $y=c_{1} e^{-4 x}+c_{2} x e^{-4 x}$ pts.

Problem 3. (20 points) Solve the following initial value problem.

$$
3 x y^{2} \frac{d y}{d x}+y^{3}+2 x=0, \quad y(1)=2 .
$$

This d.e. is not separable, linear, or homogeneous. Test whether the d.e. is exact:

$$
\begin{array}{r}
\underbrace{\left[3 x y^{2}\right]}_{N} \frac{d y}{d x}+\underbrace{y^{3}+2 x}_{M}=0 \\
\frac{\partial M}{\partial y}=\frac{\partial}{\partial y}\left[y^{3}+2 x\right]=3 y^{2} \cdot 1 \text { pt. } \frac{\partial N}{\partial x}=\frac{\partial}{\partial x}\left[3 x y^{2}\right]=3 y^{2} \cdot 1 \mathrm{pt} .
\end{array}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, the d.e. is exact. 3 pts. Therefore, the solution of the d.e. is $f(x, y)=$ c, where the function f satisfies the conditions $\frac{\partial f}{\partial x}=M=y^{3}+2 x$ and $\frac{\partial f}{\partial y}=N=3 x y^{2}$. $\frac{\partial f}{\partial x}=y^{3}+2 x \Rightarrow f=\int\left(y^{3}+2 x\right) \partial x=x y^{3}+x^{2}+g(y) 6 \mathrm{pts}$.
$\Rightarrow \frac{\partial f}{\partial y}=\frac{\partial}{\partial y}\left[x y^{3}+x^{2}+g(y)\right]=3 x y^{2}+g^{\prime}(y)$
But $\frac{\partial f}{\partial y}=N=3 x y^{2} \Rightarrow 3 x y^{2}+g^{\prime}(y)=3 x y^{2} \Rightarrow g^{\prime}(y)=0 \Rightarrow g(y)=0 \Rightarrow$
$f=x y^{3}+x^{2} 6$ pts.
Therefore, the solution of the d.e. is $x y^{3}+x^{2}=c 2 \mathrm{pts}$.
$y(1)=2 \Rightarrow(1)(2)^{3}+(1)^{2}=c \Rightarrow c=9.1 \mathrm{pt}$.

Therefore, the solution of the initial value problem is $x y^{3}+x^{2}=9$, or $y=\left(\frac{9-x^{2}}{x}\right)^{1 / 3}$
Problem 4. (20 points) Solve the following initial value problem.

$$
3 x y^{2} \frac{d y}{d x}+2 x^{3}-3 y^{3}=0, \quad y(1)=2
$$

$3 x y^{2} \frac{d y}{d x}+2 x^{3}-3 y^{3}=0 \Rightarrow \frac{d y}{d x}=\frac{3 y^{3}-2 x^{3}}{3 x y^{2}} . \quad d y / d x$ equals a rational function, and every term has the same degree (3). Therefore, this d.e. is homogeneous. 4 pts.
We introduce the new variable $v=y / x$. In the d.e. we replace $\frac{d y}{d x}$ by $v+x \frac{d v}{d x}$ and we replace y by $x v$:

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{3 y^{3}-2 x^{3}}{3 x y^{2}} \Rightarrow \underbrace{v+x \frac{d v}{d x}=\frac{3(x v)^{3}-2 x^{3}}{3 x(x v)^{2}}}_{\boxed{4 \text { pts. }}}=\frac{x^{3}\left(3 v^{3}-2\right)}{3 x^{3} v^{2}}=\frac{3 v^{3}-2}{3 v^{2}} \Rightarrow \underbrace{\underbrace{3 v^{2} d v=\frac{-2}{x} d x}_{2 \text { pts. }} \Rightarrow \int 3 v^{2} d v=\int \frac{-2}{x} d x \Rightarrow \underbrace{v^{3}=-2 \ln (x)+c}_{3 \text { pts. }} \Rightarrow \underbrace{\left(\frac{y}{x}\right)^{3}=-2 \ln (x)+c}_{2 \text { pts. }}}_{\sqrt[3 p \text { pts. }]{x \frac{d v}{d x}=\frac{3 v^{3}-2}{3 v^{2}}-v=\frac{-2}{3 v^{2}}}} .
\end{aligned}
$$

The initial condition $y(1)=2 \Rightarrow\left(\frac{2}{1}\right)^{3}=-2 \ln (1)+c \Rightarrow c=82 \mathrm{pts}$. .
Therefore, $\left(\frac{y}{x}\right)^{3}=-2 \ln (x)+8 \Rightarrow y=x[8-2 \ln (x)]^{1 / 3}$.
Problem 5. (10 points) Let P denote the population of a colony of tribbles. Suppose that β (the number of births per week per tribble) is proportional to P and that δ (the number of deaths per week per tribble) equals 0 . Suppose the initial population is 5 and the population after 10 weeks is 10 . When will the population reach 50 ?
$\left.\frac{d P}{d t}=\beta P-\delta P=(k P)\right) P-(0) P=k P^{2} .3$ pts.
This is a separable d.e: $\frac{d P}{d t}=k P^{2} \Rightarrow \frac{d P}{P^{2}}=k d t \Rightarrow \int P^{-2} d P=\int k d t \Rightarrow-P^{-1}=k t+c$. 4 pts.
$P(0)=5 \Rightarrow-(5)^{-1}=k(0)+c \Rightarrow c=-0.2 \Rightarrow-P^{-1}=k t-0.2 \Rightarrow P^{-1}=0.2-k t 1 \mathrm{pt}$.
$P(10)=10 \Rightarrow(10)^{-1}=0.2-k(10) \Rightarrow-0.1=-10 k \Rightarrow k=0.01 \Rightarrow P^{-1}=0.2-0.01 t .1 \mathrm{pt}$.
Therefore, $P(t)=50 \Rightarrow(50)^{-1}=0.2-0.01 t \Rightarrow t=18$ weeks. 1 pt.

