1. Write the d.e. in the form $\frac{d y}{d x}=f(x, y)$.
2. Can the right-hand side $f(x, y)$ be factored into a term involving only x times a term involving only y : $\frac{d y}{d x}=g(x) h(y)$? If so, the d.e. is separable. Separate variables and integrate:

$$
\int \frac{d y}{h(y)}=\int g(x) d x
$$

3. Can the right-hand side $f(x, y)$ be written as $\left(\right.$ blob $\left._{1}\right) y+$ blob $_{2}$, where the blobs involve only x and constants? If so, the d.e. is linear. Rewrite the d.e. in the standard form

$$
\frac{d y}{d x}+P(x) y=Q(x)
$$

multiply both sides of the standard form of the d.e. by the integrating factor $\rho(x)=e^{\int P(x) d x}$, rewrite the d.e. as $\frac{d}{d x}[\rho(x) y]=\rho(x) Q(x)$, then integrate to get

$$
\rho(x) y=\int \rho(x) Q(x) d x+c
$$

4. Can the right-hand side $f(x, y)$ be written as a function of y / x ? For example, can $f(x, y)$ be written as the ratio of two polynomials, each of whose terms all have the same degree? If so, the d.e. is homogeneous. Let $v=y / x$. Replace y by $x v$ and replace $d y / d x$ by $v+x \frac{d v}{d x}$. The new d.e. is separable. Solve for v, then replace v by y / x.
5. Rewrite the d.e. in the form $M(x, y)+N(x, y) \frac{d y}{d x}=0$. If $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, the d.e. is exact. Let $f(x, y)=\int M(x, y) d x$, remembering that the "constant" of integration is $g(y)$. Compute $\frac{\partial f}{\partial y}$, set it equal to $N(x, y)$, solve for $g^{\prime}(y)$, then integrate to find $g(y)$. Plug this expression for $g(y)$ into your formula for $f(x, y)$. The solution of the d.e. is

$$
f(x, y)=c
$$

