Homework Assignments for 4th edition of Edwards \& Penney

Homework problems are due the second class day after we finish covering the material.

Section	Topic	Homework AssignmentPage Problems	
1.1	Differential equations and mathematical models		$1,4,5,10,17,20,23,34,35$ (No need to draw graphs for \#17, 20, 23)
1.2	Integrals as general and particular solutions	17	1, 5, 7, 8, 13, 25, 26, 31, 35
1.4	Separable equations and applications	43	1,7,10,13,19,23,26,33,37,40,43
1.5	First-order linear equations	$\begin{array}{\|l\|} \hline 56 \\ 78 \end{array}$	$1,4,9,13,15,27,34,37$ $1,5,13$ Please turn in both parts of this assignment together.
1.6	Homogeneous and exact equations	$\begin{array}{\|l\|} \hline 74 \\ 78 \\ \hline \end{array}$	2, 9, 10, 31, 35 3, 7, 17 Please turn in both parts of this assignment together.
2.4	Numerical approximation: Euler's method		Problem on class handout
2.6	The Runge-Kutta method		Problem on class handout
1.3	Slope fields and solution curves	27	1, 2, 7. Use the MATLAB utility dirfield
2.2	Equilibrium solutions and stability	98	$1,3,6,8,9,11,21$. In 1-11 draw the phase line and solution curves separately. Do not solve for $\mathbf{x}(\mathbf{t})$. Instead, find $\lim x(t)$ assuming $x(0)=1$.
2.1	Population models	87	10, 11, 13, 21, 30. Hint for \# 21: See equation (7) on p. 82. The units of P are millions of people.
2.3	Acceleration-velocity models	108	1, 2, 3, 7, 12
$\begin{aligned} & 3.1 \\ & 3.2 \\ & \hline \end{aligned}$	Introduction: Second-order linear equations General solutions of linear equations	$\begin{aligned} & 158 \\ & 170 \end{aligned}$	3, 9, 33-41 odd 21, 23 Please turn in both parts of this assignment together.
3.3	Homogeneous equations w. constant coefficients	183	1-15 odd, 25, 27, 29
3.5	Nonhomogeneous equations	210	1, 3, 7, 9, 24, 27, 47, 52, 58
3.4	Mechanical vibrations	195	$1,4,15,20,34$ For \# 15 and 20 do not find $u(t)$ and do not draw graphs. For \#34 use the results of problems 32 and 33 .
3.6	Forced oscillations and resonance		$1,8,11,17,19 .$ Do not draw graphs for \#1, 8, or 11. For \# 17 see (21) on p. 219.
3.7	Electrical Circuits	231	7, 11, 17, 23
4.1	First-order systems and applications		$1,5,7,11,18,24,26$ Do not draw dir field or curves for \#11 or 18.
4.3	Numerical methods for systems		Problem on class handout
7.1	Laplace transforms and inverse transforms	450	1, 7, 11-15 odd, 23-31 odd
7.3	Translation and partial fractions		1-15 odd. Use any method you like to solve the problems you need not follow the directions.
7.2	Transformation of initial value problems	462	1, 3, 5, 7, 8, 9
7.4	Derivatives, integrals, and products of transforms	481	1, 6, 7, 8, 37 (Optional assignment)
7.5	Periodic and piecewise continuous input functions		$1,5,9,13,17,33$. Do not draw graphs. (Optional assignment)
7.6	Impulses and delta functions	502	1, 7, 15 Do not draw graphs. (Optional assignment)

