## MATH. 2360 Engineering Differential Equations

## Review Sheet for Exam \#3

| Section | You should |
| :---: | :---: |
| 3.3 | - be able to solve $n^{\text {th }}$ order linear homogeneous ode's with constant coefficients |
| 3.4 | - be able to formulate and solve the second-order linear homogeneous ode describing the unforced motion of a mass attached to a spring: $m x^{\prime \prime}+c x^{\prime}+k x=0$ <br> - be able to express the solution to an undamped mass/spring problem in the form $x=C \cos \left(\omega_{0} t-\alpha\right)$ <br> - be able to tell whether a system is overdamped, underdamped, or critically damped <br> - be able to express the solution to an underdamped mass/spring problem in the form $x=C e^{-p t} \cos \left(\omega_{1} t-\alpha\right)$ |
| 3.5 | - be able to find a particular solution of a nonhomogeneous linear equation using either the Method of Undetermined Coefficients or the Method of Variation of Parameters |
| 3.6 | - be able to formulate and solve the second-order linear nonhomogeneous ode describing the forced motion of a mass attached to a spring: $m x^{\prime \prime}+c x^{\prime}+k x=F(t)$ <br> - be able to find the steady-state periodic solution and the transient solution of a damped, forced mass-spring system |
| 3.7 | - be able to formulate and solve the second-order linear nonhomogeneous ode describing the forced motion of an LCR circuit: $L Q^{\prime \prime}+R Q^{\prime}+\frac{1}{C} Q=E(t)$ |
| 4.1 | - be able to solve systems of 2 linear constant coefficient d.e.'s |

## Answers to Practice Exam Questions

(Full solutions are available on the course web page under the Course Materials link.)
1a. $y=c_{1} e^{-x} \cos (x)+c_{2} e^{-x} \sin (x)$ 1b. $y=c_{1}+c_{2} e^{5 x}+c_{3} x e^{5 x}$
1c. $y=c_{1} e^{3 x} \cos (4 x)+c_{2} e^{3 x} \sin (4 x)$ 1d. $y=c_{1}+c_{2} x+c_{3} e^{-2 x}+c_{4} x e^{-2 x}$
2. $y=8 e^{-x}+4 x-8+2 e^{x}$
3. $y=-6+6 \cos (x)-3 \sin (x)$
4. $I_{\mathrm{sp}}=16 \cos (4 t)$

5a. $x=-e^{-3 t} \cos (t)-3 e^{-3 t} \sin (t) 5$ b. $x=\sqrt{10} e^{-3 t} \cos \left(t-\left(\pi+\tan ^{-1}(3)\right)\right)$
5c. underdamped
6. $x=-\frac{1}{3} c_{1} e^{-t}+c_{2} e^{3 t}, y=c_{1} e^{-t}+c_{2} e^{3 t}$
7. $x=c_{1} e^{-t}+c_{2} e^{-3 t}, y=-c_{1} e^{-t}-3 c_{2} e^{-3 t}$

There is no guarantee that the actual exam will bear any resemblance to these sample problems.

Problem 1. Solve the following differential equations.
a. $y^{\prime \prime}+2 y^{\prime}+2 y=0$.
b. $y^{(3)}-10 y^{\prime \prime}+25 y^{\prime}=0$.
c. $y^{\prime \prime}-6 y^{\prime}+25 y=0$.
d. $y^{(4)}+4 y^{(3)}+4 y^{\prime \prime}=0$.

Problem 2. Solve the following initial value problem:

$$
y^{\prime \prime}+2 y^{\prime}+y=4 x+8 e^{x}, y(0)=2, y^{\prime}(0)=-2 .
$$

Problem 3. Solve the following initial value problem:

$$
y^{\prime \prime}-2 y^{\prime}=15 \sin (x), y(0)=0, y^{\prime}(0)=-3
$$

Problem 4. Consider an RLC circuit with inductance $H=1$ henry, resistance $R=2 \Omega$, capacitance $C=1 / 16$ farad, and applied voltage $E(t)=32 \cos (4 t)$ volts. Find the steady periodic current $I_{s p}(t)$.

Problem 5. Consider a free (unforced), damped mass-spring system with mass $m=1 \mathrm{~kg}$, damping constant $c=6 \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}$, and spring constant $k=10 \mathrm{~N} / \mathrm{m}$. Assume that $x(0)=-1$ and $x^{\prime}(0)=0$.
a. Find the position function $x(t)$.
b. Express your solution from part a in the form $x=C e^{-p t} \cos \left(\omega_{1} t-\alpha\right)$
c. Is this system overdamped, underdamped, or critically damped?

Problem 6. Solve the system $\left\{\begin{array}{l}x^{\prime}=2 x+y \\ y^{\prime}=3 x\end{array}\right.$
Note: $x^{\prime}=d x / d t$ and $y^{\prime}=d y / d t . t$ is the independent variable.

Problem 7. Solve the system $\left\{\begin{array}{l}x^{\prime}=y \\ y^{\prime}=-3 x-4 y\end{array}\right.$
Note: $x^{\prime}=d x / d t$ and $y^{\prime}=d y / d t . t$ is the independent variable.

