MATH.2360 Engineering Differential Equations Review Sheet for Exam #3

Section	You should
3.3	• be able to solve n^{th} order linear homogeneous ode's with constant
	coefficients
3.4	• be able to formulate and solve the second-order linear homogeneous ode
	describing the unforced motion of a mass attached to a spring:
	mx'' + cx' + kx = 0
	• be able to express the solution to an undamped mass/spring problem
	in the form $x = C\cos(\omega_0 t - \alpha)$
	• be able to tell whether a system is overdamped, underdamped, or
	critically damped
	• be able to express the solution to an underdamped mass/spring problem
0.5	in the form $x = Ce^{-pt}\cos(\omega_1 t - \alpha)$
3.5	• be able to find a particular solution of a nonhomogeneous linear equation
	using either the Method of Undetermined Coefficients or the Method of
0.0	Variation of Parameters
3.6	• be able to formulate and solve the second-order linear nonhomogeneous
	ode describing the forced motion of a mass attached to a spring: $m x'' + s x' + k x = F(t)$
	mx'' + cx' + kx = F(t)
	• be able to find the steady-state periodic solution and the transient solution of a damped, forced mass-spring system
3.7	 be able to formulate and solve the second-order linear nonhomogeneous
3.1	ode describing the forced motion of an LCR circuit:
	<u> </u>
	$LQ'' + RQ' + \frac{1}{C}Q = E(t)$
4.1	• be able to solve systems of 2 linear constant coefficient d.e.'s

Answers to Practice Exam Questions

(Full solutions are available on the course web page under the Course Materials link.)

1a.
$$y = c_1 e^{-x} \cos(x) + c_2 e^{-x} \sin(x)$$
 1b. $y = c_1 + c_2 e^{5x} + c_3 x e^{5x}$ 1c. $y = c_1 e^{3x} \cos(4x) + c_2 e^{3x} \sin(4x)$ 1d. $y = c_1 + c_2 x + c_3 e^{-2x} + c_4 x e^{-2x}$ 2. $y = 8e^{-x} + 4x - 8 + 2e^x$ 3. $y = -6 + 6\cos(x) - 3\sin(x)$ 4. $I_{\rm sp} = 16\cos(4t)$ 5a. $x = -e^{-3t}\cos(t) - 3e^{-3t}\sin(t)$ 5b. $x = \sqrt{10}e^{-3t}\cos\left(t - \left(\pi + \tan^{-1}(3)\right)\right)$ 5c. underdamped 6. $x = -\frac{1}{3}c_1e^{-t} + c_2e^{3t}$, $y = c_1e^{-t} + c_2e^{3t}$ 7. $x = c_1e^{-t} + c_2e^{-3t}$, $y = -c_1e^{-t} - 3c_2e^{-3t}$

There is no guarantee that the actual exam will bear any resemblance to these sample problems.

Problem 1. Solve the following differential equations.

a.
$$y'' + 2y' + 2y = 0$$
.

b.
$$y^{(3)} - 10y'' + 25y' = 0$$
.

c.
$$y'' - 6y' + 25y = 0$$
.

d.
$$y^{(4)} + 4y^{(3)} + 4y'' = 0$$
.

Problem 2. Solve the following initial value problem:

$$y'' + 2y' + y = 4x + 8e^x$$
, $y(0) = 2$, $y'(0) = -2$.

Problem 3. Solve the following initial value problem:

$$y'' - 2y' = 15\sin(x), \ y(0) = 0, \ y'(0) = -3.$$

Problem 4. Consider an RLC circuit with inductance H = 1 henry, resistance $R = 2\Omega$, capacitance C = 1/16 farad, and applied voltage $E(t) = 32\cos(4t)$ volts. Find the steady periodic current $I_{sp}(t)$.

Problem 5. Consider a free (unforced), damped mass-spring system with mass m=1 kg, damping constant c=6 N·s/m, and spring constant k=10 N/m. Assume that x(0)=-1 and x'(0)=0.

- a. Find the position function x(t).
- b. Express your solution from part a in the form $x = Ce^{-pt}\cos(\omega_1 t \alpha)$
- c. Is this system overdamped, underdamped, or critically damped?

Problem 6. Solve the system $\begin{cases} x' = 2x + y \\ y' = 3x \end{cases}$

Note: x' = dx/dt and y' = dy/dt. t is the independent variable.

Problem 7. Solve the system $\begin{cases} x' = y \\ y' = -3x - 4y \end{cases}$

Note: x' = dx/dt and y' = dy/dt. t is the independent variable.