MATH.2360 Engineering Differential Equations Practice Final Exam Solutions

Problem 1. Solve the following initial value problem: xy’ — y—2 =0, y(1) =1.
x
This is a separable d.e.
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Problem 2. Solve the following initial value problem: zyy’ + y? — 22 =0, y(2)=1.
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zyy +y¥P —2?=0=y = . Since 4/ equals a rational function in which each term has the

same degree (2), the d.e. is homogeneous.
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We introduce the new variable v = y/z. In the d.e. we replace y’ by v + x— and we replace y by
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Therefore, 1 — 2(y/z)* = — = =227 =8 = |y =
x
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Problem 3. Solve the following initial value problem: y’ — Yo cos(z), y(m) = 0.
x

This is a linear d.e. because y and vy’ appear to the first power and are multiplied by constants or
functions of x.

The d.e. is already in standard form.
Find the integrating factor: p(z) = e/ F(®) 4z — of ~4/z do _ —4In(@) _ ;—4

Multiply both sides of the standard form of the d.e. by the integrating factor:

_4 [dy 4 B L dy B
* . - = 4 4 = 4_ _ 5 —
x [dm (:E) y} x (:L' cos(:n)) cos(z) = x . 4x™°y = cos(x).

d
Use the Product Rule backwards to rewrite the d.e. as e [:E_4y] = cos(x).



Integrating both sides, we obtain =~y = /cos(:n) dx = sin(z) + c.

y(r)=0=n"40)=sin(r)+c=c=c=0

Therefore, =%y = sin(xz), so ||y = ?sin(z).

Problem 4. Solve the following initial value problem: 2zyy’ + y? — 423 = 0, y(1) =2.

The given d.e. is exact: 22y y’ + y?> — 423 =0
~~ ——

N M
aa—]\; = 6%/ [ 2_ 4$3} = 2y and %—JZ = % [2xy] = 2y. The d.e. is exact because aa—]\; = %—JZ
Therefore, the solution of the d.e. is f(z,y) = ¢ where f satisfies the conditions % =M = y?® — 423
and g—z = N = 2uzxy.
% = y? — 423 :>f:/(y2—4:133) Or = zy* — 2t + g(y) = g—‘g = 8%/ [$y2—$4+g(y)] =2zy + ¢'(y).
But g—';; = N = 2xy. Therefore, 2xy + ¢'(y) = 22y = ¢'(y) = 0 = g(y) = /0 dy =0so f = zy* — z*. The
solution of the d.e. is zy? — z* = ¢
y(l):2:>1(2)2—14:c:>c:3:>:Ey2—:n4:3:>y2: $4;—3 = ||y = $4;—3

Problem 5. Let P denote the population of a colony of tribbles. Suppose that § (the number of births
per week per tribble) is proportional to v/P and that § (the number of deaths per week per tribble)
equals 0. Suppose the initial population is 4 and the population after 1 week is 9. What is the
population after 2 weeks?

dP
Recall that the de modeling population problems is o GBP —46P.

dpP
Let t denote time (in weeks). 3 = kv/P and § = 0 so — = (k‘\/ﬁ) P—0.-P=FkP3?

dt
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Problem 6. Find the general solution to each of the following linear homogeneous differential equations:
a. y/// + 2y// + 2y/ — 0

The characteristic equation is 3 4+ 2r2 +2r = 0 = r (r2 + 2r + 2) =0
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Therefore, the roots of the characteristic equation are r =0 and r = —1 + ¢

P4 r42=0=r=

so the solution of the d.e. is

y = c1€% + coe 1 cos(1x) + cze ¥ sin(1x), or ||y = ¢1 + coe™% cos(x) + cze T sin(x) ||

b. y® -9y =0

The characteristic equation is ! — 9r% = 0 = r? (r2 - 9) =0=7r%(r+3)(r-3)=0=

r =0 (double root), r = -3, orr =3

3z
)

Therefore, y = c1€% + cpze® + c3¢73% + 4%, or

Yy = c1 + cow + c3e73% + €37 ||,

Problem 7. Consider a forced, damped mass-spring system with mass 1 kg, damping coefficient 2 Ns/m,
spring constant 4 N/m, and an external force Fiy(t) = 8 cos(2t) N. Find the steady-state periodic
solution ey ().

The d.e. modeling this system is ma” + cz’ + kx = F.(t), or 2" + 22’ + 42 = 8 cos(2t).
The steady-state periodic solution xg,(t) is the particular solution z,(t).

The nonhomogeneous term in the de is 8 cos(2t), a cosine function. We should therefore guess

that x, is a combination of a cosine function and a sine function with the same coefficient of ¢:

xp = Acos(2t) + Bsin(2t). This guess does not duplicate any term z. because x. is a transient

term containing decaying exponential functions, so there is no need to modify this guess.

x = Acos(2t) + Bsin(2t) = 2/ = —2Asin(2t) + 2B cos(2t) = 2" = —4A cos(2t) — 4B sin(2t)

Therefore, the left side of the d.e. is 2”+22'+42 = —4A cos(2t)—4B sin(2t)+2 [-2A sin(2t) + 2B cos(2t)]+
4 [Acos(2t) + Bsin(2t)] = 4B cos(2t) — 4Asin(2t).

We want this to equal the nonhomogeneous term 8 cos(2t):

4B cos(2t)—4Asin(2t) = 8cos(2t) = 4B =8, —4A = 0= A =0, B = 2. Thus, || zsp = = = 25sin(2t) ||

Problem 8. Consider an RLC circuit with inductance L = 1 henry, resistance R = 52, capacitance
C = 0.25 farads, and applied voltage E(t) = 20 cos(2t) volts. Suppose the initial charge on the
capacitor Q(0) = 1 coul and the initial current in the circuit Q'(0) = 0 amps. Find the current in
the circuit I(t).

The d.e. modeling this system is LQ"” + RQ’ + % = E(t), or Q"+ 5Q" +4Q = 20 cos(2t).
Step 1. Find Q. by solving the d.e. Q" + 5Q" +4Q = 0.

Characteristic equation: > +5r +4=0= (r4+4)(r+1)=0=>r=—4orr=—1
Therefore, Q. = cie™* + coe™t.

Step 2. Find @,. You can use either of the following methods.

Method 1: Undetermined Coefficients. The nonhomogeneous term in the de is 20 cos(2t), a cosine
function. We should therefore guess that (), is a combination of a cosine function and a sine



function with the same coefficient of ¢: @, = Acos(2t) + Bsin(2t). This guess does not duplicate
any term ()., so there is no need to modify this guess.

Q = Acos(2t) + Bsin(2t) = Q' = —2Asin(2t) + 2B cos(2t) = Q" = —4A cos(2t) — 4B sin(2t)

Therefore, the left side of the d.e. is Q”"+5Q'+4Q = —4A cos(2t)—4B sin(2t)+5 [-2A sin(2t) + 2B cos(2t)]+
4 [Acos(2t) + Bsin(2t)] = 10B cos(2t) — 10A sin(2t).

We want this to equal the nonhomogeneous term 20 cos(2t):

10Bcos(2t) — 10Asin(2t) = 20cos(2t) = 10B = 20, —10A = 0= A = 0, B = 2. Thus,

Qp = 2sin(2t).

Method 2: Variation of Parameters. From (). we obtain two independent solutions of the homoge-

neous d.e: Q@ = e~ and Q2 = e~*. The Wronskian is given by
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Therefore, Q, = u1 Q1 + u2Q2 = e* [—g cos(2t) — 3 sin(2t)] (e_4t) + ¢t [g cos(2t) + 3 sin(2t)] (e_t) = 2sin(2t)

Step 3. Q@ = Q¢+ Qp, 50 Q = cre™ Y + coe™ + 25in(2¢)

Step 4. Use the initial conditions to determine the values of ¢; and cs.
Q =cie™ + et 4+ 25in(2t) = Q' = —dcre™ — o + 4 cos(2t)
Q) =1= c1e® + 2’ +2sin(0) =1 = ¢; + o = 1.

Q'(0)=0= —4c1e® — e’ + 4cos(0) = 0 = —de; — ¢ = —4.

cit+ca=1, —4c1 —co=—4=c1=1, co=0

Therefore, Q = e~ 4 2sin(2t) so || I = Q" = —4e™* + 4 cos(2t)

Problem 9. Use the Laplace Transform to solve the following IVP: 2" + 52’ + 6z = 4e™*, z(0) = 1, 2/(0) = 0.

Solutions not using the Laplace transform method will not receive any credit. = is a function of .
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Use a partial fraction decomposition:
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