Problem 1. (10 pts.)

Solve the following initial value problem: $y^{\prime}=\frac{x y^{3}}{\sqrt{1+x^{2}}}, \quad y(0)=-1$.
Note: y^{\prime} means $d y / d x$.
This is a separable d.e. 2 pts. $\quad \frac{d y}{d x}=\frac{x y^{3}}{\sqrt{1+x^{2}}} \Rightarrow \frac{d y}{y^{3}}=\frac{x d x}{\sqrt{1+x^{2}}} 1 \mathrm{pt}$.
$\Rightarrow \int y^{-3} d y=\underbrace{\int x\left(1+x^{2}\right)^{-1 / 2} d x}_{u=1+x^{2}} \Rightarrow \frac{y^{-2}}{-2}=\left(1+x^{2}\right)^{1 / 2}+c 6 \mathrm{pts}$.
$\Rightarrow y^{-2}=-2\left(1+x^{2}\right)^{1 / 2} \underbrace{-2 c}_{c_{1}}=c_{1}-2\left(1+x^{2}\right)^{1 / 2}$
$y(0)=-1 \Rightarrow(-1)^{-2}=c_{1}-2\left(1+0^{2}\right)^{1 / 2} \Rightarrow c_{1}=31 \mathrm{pt}$.
Therefore, $y^{-2}=3-2\left(1+x^{2}\right)^{1 / 2} \Rightarrow y=-\left[3-2\left(1+x^{2}\right)^{1 / 2}\right]^{-1 / 2}$.

Problem 2. (10 pts.)

Solve the following initial value problem: $2 x y^{2}+4=\left(6-2 x^{2} y\right) y^{\prime}$ with $y(-1)=8$.
Note: y^{\prime} means $d y / d x$.
This d.e. is not separable, linear, or homogeneous. To see whether it is exact, move all terms to the same side of the equation: $2 x y^{2}+4-\left(6-2 x^{2} y\right) y^{\prime}=0$, or $\underbrace{2 x y^{2}+4}_{M}+\underbrace{\left(2 x^{2} y-6\right)}_{N} y^{\prime}=0$
$\frac{\partial M}{\partial y}=\frac{\partial}{\partial y}\left[2 x y^{2}+4\right]=4 x y$ and $\frac{\partial N}{\partial x}=\frac{\partial}{\partial x}\left[2 x^{2} y-6\right]=4 x y$
Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, the d.e. is exact. 2 pts.
Therefore, the solution of the d.e. is $f(x, y)=c$, where the function f satisfies the conditions $\frac{\partial f}{\partial x}=M=2 x y^{2}+4$ and $\frac{\partial f}{\partial y}=N=2 x^{2} y-6$.
$\frac{\partial f}{\partial x}=2 x y^{2}+4 \Rightarrow f=\int\left(2 x y^{2}+4\right) d x=x^{2} y^{2}+4 x+g(y) 3 \mathrm{pts}$.
$\Rightarrow \frac{\partial f}{\partial y}=2 x^{2} y+g^{\prime}(y)$. But $\frac{\partial f}{\partial y}=N=2 x^{2} y-6$, so $2 x^{2} y+g^{\prime}(y)=2 x^{2} y-6$
$\Rightarrow g^{\prime}(y)=-6 \Rightarrow g(y)=-6 y 2$ pts. .
Therefore, $f=x^{2} y^{2}+4 x-6 y$, so the solution of the d.e. is $x^{2} y^{2}+4 x-6 y=c$. 2 pts.
The initial condition $y(-1)=8 \Rightarrow(-1)^{2} 8^{2}+4(-1)-6(8)=c \Rightarrow c=121 \mathrm{pt}$.
Therefore, the solution of the given IVP is $x^{2} y^{2}+4 x-6 y=12$, or, using the quadratic formula to solve for y,

$$
y=\frac{3+\sqrt{9+12 x^{2}-4 x^{3}}}{x^{2}}
$$

Problem 3. (15 points)

A tank initially contains 12 liters of pure water (no salt). Water containing 2 grams of salt per liter is pumped into the tank at the rate of 3 liters per minute, and the well-mixed solution in the tank is pumped out of the tank at the rate of 3 liters per minute. How long will it take for the amount of salt in the tank to reach 12 grams?
let t denote time (in minutes) and let x denote the amount of salt in the tank at time t (in grams).
$\frac{d x}{d t}=$ rate in - rate out $=($ flow rate in $)($ concentration in $)-($ flow rate out $)($ concentration out $)$,
$3 \mathrm{pts}$. so $\frac{d x}{d t}=\left(3 \frac{\text { liters }}{\text { minute }}\right)\left(2 \frac{\mathrm{~g}}{\text { liter }}\right)-\left(3 \frac{\text { liters }}{\text { minute }}\right)\left(\frac{x \mathrm{~g}}{12 \text { liters }}\right) 3 \mathrm{pts}$.
(The volume in the tank at time t is initial volume $+t$ (flow rate in - flow rate out) $=12+(3-3) t=$ 12 liters.)
$\frac{d x}{d t}=6-\frac{3 x}{12}=6-\frac{x}{4}=-\frac{1}{4}(x-24) \Rightarrow \frac{d x}{x-24}=-\frac{1}{4} d t \Rightarrow \int \frac{d x}{x-24}=\int\left(-\frac{1}{4}\right) d t \Rightarrow$
$\ln |x-24|=-\frac{t}{4}+c \Rightarrow|x-24|=e^{-t / 4+c}=e^{-t / 4} e^{c} \Rightarrow x-24=\underbrace{ \pm e^{c}}_{c_{1}} e^{-t / 4}=c_{1} e^{-t / 4} 6$ pts.
$x(0)=0 \Rightarrow 0-24=c_{1} e^{0} \Rightarrow c_{1}=-24 \Rightarrow x=24-24 e^{-t / 4} 2 \mathrm{pts}$.
To find how long it takes for the amount of salt in the tank to reach 12 grams, set $x=12$ and solve for t :
$12=24-24 e^{-t / 4} \Rightarrow-12=-24 e^{-t / 4} \Rightarrow 0.5=e^{-t / 4} \Rightarrow \ln (0.5)=\ln \left(e^{-t / 4}\right)=-t / 4 \Rightarrow$

$t=-4 \ln (0.5) \approx 2.8$ minutes	1 pt.

Problem 4. (10 pts.) Find the general solution to each of the following differential equations.
a. (4 points) $y^{\prime \prime}-4 y^{\prime}+5 y=0$

The characteristic equation is $r^{2}-4 r+5=0 \Rightarrow$
$r=\frac{-(-4) \pm \sqrt{(-4)^{2}-4(1)(5)}}{2(1)}=\frac{4 \pm \sqrt{-4}}{2}=\frac{4 \pm 2 i}{2}=2 \pm i 2$ pts.
Therefore, $y=c_{1} e^{2 x} \cos (x)+c_{2} e^{2 x} \sin (x)$. 2 pts.
b. (6 points) $y^{(3)}+4 y^{\prime \prime}+4 y^{\prime}=0$

The characteristic equation is $r^{3}+4 r^{3}+4 r=0 \Rightarrow r\left(r^{2}+4 r+4\right)=0 \Rightarrow r(r+2)^{2}=0$.
Thus, the roots of the characteristic equation are 0 and -2 (double root). 2 pts.
Therefore, $y=c_{1} e^{0 x}+c_{2} e^{-2 x}+c_{3} x e^{-2 x}$ or $y=c_{1}+c_{2} e^{-2 x}+c_{3} x e^{-2 x}$. 4 pts.

Problem 5. (15 points)

Solve the following initial value problem:

$$
y^{\prime \prime}-5 y^{\prime}+4 y=32 x+20 \sin (2 x) \text { with } y(0)=10 \text { and } y^{\prime}(0)=0 .
$$

Step 1. Find y_{c} by solving the homogeneous d.e. $y^{\prime \prime}-5 y^{\prime}+4 y=0$.
Characteristic equation: $r^{2}-5 r+4=0 \Rightarrow(r-1)(r-4)=0 \Rightarrow r=1$ or $r=4$.

Therefore, $y_{c}=c_{1} e^{x}+c_{2} e^{4 x}$. 3 pts.
Step 2. Find y_{p} using either the Method of Undetermined Coefficients or the Method of Variation of Parameters.
Method 1. Undetermined Coefficients.
Since the nonhomogeneous term in the d.e. $(32 x+20 \sin (2 x))$ is the sum of a polynomial of degree 1 and a sine function, we guess that y_{p} is the sum of a polynomial of degree 1 and the sum of a cosine and sine with the same frequency as the sine function in the nonhomogeneous term: $y_{p}=A x+B+C \cos (2 x)+D \sin (2 x)$. No term in this guess duplicates a term in y_{c}, so there is no need to modify the guess. 3 pts.
$y=A x+B+C \cos (2 x)+D \sin (2 x) \Rightarrow y^{\prime}=A-2 C \sin (2 x)+2 D \cos (2 x) \Rightarrow$
$y^{\prime \prime}=-4 C \cos (2 x)-4 D \sin (2 x)$.
Therefore, the left side of the d.e. is
$y^{\prime \prime}-5 y^{\prime}+4 y=-4 C \cos (2 x)-4 D \sin (2 x)-5[A-2 C \sin (2 x)+2 D \cos (2 x)]+4[A x+B+C \cos (2 x)+D \sin (2 x)]=$ $4 A x+(4 B-5 A)+10 C \sin (2 x)-10 D \cos (2 x)$. We want this to equal the nonhomogeneous term $32 x+20 \sin (2 x)$, so $4 A=32,4 B-5 A=0,10 C=20$, and $-10 D=0 \Rightarrow$
$A=8, B=10, C=2$, and $D=0$. Therefore, $y_{p}=8 x+10+2 \cos (2 x) .6$ pts.
Method 2. Variation of Parameters.
From y_{c} we obtain two independent solutions of the homogeneous d.e: $y_{1}=e^{x}$ and
$y_{2}=e^{4 x}$. The Wronskian is given by $W(x)=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|=\left|\begin{array}{cc}e^{x} & e^{4 x} \\ e^{x} & 4 e^{4 x}\end{array}\right|$
$=e^{x}\left(4 e^{4 x}\right)-\left(e^{x}\right)\left(e^{4 x}\right)=4 e^{5 x}-e^{5 x}=3 e^{5 x} .1$ pt.
$u_{1}=\int \frac{-y_{2} f(x)}{W(x)} d x=-\int \frac{e^{4 x}(32 x+20 \sin (2 x))}{3 e^{5 x}} d x=-\frac{32}{3} \int x e^{-x} d x-\frac{20}{3} \int e^{-x} \sin (2 x) d x$
$=-\frac{32}{3}(-x-1) e^{-x}-\frac{4}{3} e^{-x}[-\sin (2 x)-2 \cos (2 x)]$ using entries 46 (with $u=-x$) and 49 from the Table of Integrals. 3 pts.
$u_{2}=\int \frac{y_{1} f(x)}{W(x)} d x=\int \frac{e^{x}(32 x+20 \sin (2 x))}{3 e^{5 x}} d x=\frac{32}{3} \int x e^{-4 x} d x+\frac{20}{3} \int e^{-4 x} \sin (2 x) d x$
$=\frac{2}{3}(-4 x-1) e^{-4 x}+\frac{1}{3} e^{-4 x}[-4 \sin (2 x)-2 \cos (2 x)]$ using entries 46 (with $u=-4 x$) and 49 from the Table of Integrals. 3 pts.
Therefore, $y_{p}=u_{1} y_{1}+u_{2} y_{2}$
$=\left\{-\frac{32}{3}(-x-1) e^{-x}-\frac{4}{3} e^{-x}[-\sin (2 x)-2 \cos (2 x)]\right\} e^{x}$
$+\left\{\frac{2}{3}(-4 x-1) e^{-4 x}+\frac{1}{3} e^{-4 x}[-4 \sin (2 x)-2 \cos (2 x)]\right\} e^{4 x}$
$=\frac{32}{3}(x+1)+\frac{4}{3} \sin (2 x)+\frac{8}{3} \cos (2 x)-\frac{2}{3}(4 x+1)-\frac{4}{3} \sin (2 x)-\frac{2}{3} \cos (2 x)=8 x+10+2 \cos (2 x) 2$ pts.
Step 3. $y=y_{c}+y_{p}$, so $y=c_{1} e^{x}+c_{2} e^{4 x}+8 x+10+2 \cos (2 x) .1$ pt.
Step 4. Use the initial conditions to find c_{1} and c_{2}.
$y=c_{1} e^{x}+c_{2} e^{4 x}+8 x+10+2 \cos (2 x) \Rightarrow y^{\prime}=c_{1} e^{x}+4 c_{2} e^{4 x}+8-2 \sin (2 x)$
$y(0)=10 \Rightarrow 10=c_{1} e^{0}+c_{2} e^{0}+8(0)+10+2 \cos (0)=c_{1}+c_{2}+12 \Rightarrow c_{1}+c_{2}=-2$
$y^{\prime}(0)=0 \Rightarrow 0=c_{1} e^{0}+4 c_{2} e^{0}+8-2 \sin (0)=c_{1}+4 c_{2}+8 \Rightarrow c_{1}+4 c_{2}=-8$
$c_{1}+c_{2}=-2, c_{1}+4 c_{2}=-8 \Rightarrow c_{1}=0, c_{2}=-22 \mathrm{pts}$.
Therefore,

$$
y=-2 e^{4 x}+8 x+10+2 \cos (2 x) .
$$

Problem 6. (10 points)

A series circuit consists of a generator supplying $120 \cos (4 t)$ volts, a 5 ohm resistor, and a 0.05 farad capacitor. Assume the initial charge on the capacitor is 0 . Find the charge on the capacitor $Q(t)$.
Remember that the d.e. modeling the charge on the capacitor in an RC circuit is $R Q^{\prime}+\frac{Q}{C}=E(t)$
Substituting the given parameter values and the given applied voltage, we find that the model d.e.
is $5 Q^{\prime}+\underbrace{\frac{1}{0.05}}_{20} Q=120 \cos (4 t)$, or $Q^{\prime}+4 Q=24 \cos (4 t)$
This is a first-order linear d.e., so we can solve it by finding the integrating factor or we can treat it as a constant-coefficient linear d.e.:

Step 1. Find Q_{c} by solving the homogeneous d.e. $Q^{\prime}+4 Q=0$.
Characteristic equation: $r+4=0 \Rightarrow r=-4$.
Therefore, $Q_{c}=c e^{-4 t}$. 3 pts.
Step 2. Find Q_{p} using either the Method of Undetermined Coefficients or the Method of Variation of Parameters. Using the Method of Undetermined Coefficients: Since the nonhomogeneous term in the d.e. $(24 \cos (4 t))$ is a cosine function, we guess that Q_{p} is the sum of a cosine and sine with the same frequency as the cosine function in the nonhomogeneous term: $Q_{p}=A \cos (4 t)+B \sin (4 t)$. No term in this guess duplicates a term in Q_{c}, so there is no need to modify the guess.
$Q=A \cos (4 t)+B \sin (4 t) \Rightarrow Q^{\prime}=-4 A \sin (4 t)+4 B \cos (4 t)$
Therefore, the left side of the d.e. is $Q^{\prime}+4 Q=-4 A \sin (4 t)+4 B \cos (4 t)+4[A \cos (4 t)+B \sin (4 t)]=$ $[4 A+4 B] \cos (4 t)+[-4 A+4 B] \sin (4 t)$. We want this to equal the nonhomogeneous term $24 \cos (4 t)$, so $4 A+4 B=24,-4 A+4 B=0 \Rightarrow A=3$ and $B=3$. Therefore, $Q_{p}=3 \cos (4 t)+3 \sin (4 t)$. 5 pts.

Step 3. $Q=Q_{c}+Q_{p}=c e^{-4 t}+3 \cos (4 t)+3 \sin (4 t) 1$ pt.
Step 4. Use the initial condition to find c :
$Q(0)=0 \Rightarrow 0=c e^{0}+3 \cos (0)+3 \sin (0)=c+3 \Rightarrow c=-3$ pt. $\Rightarrow Q=-3 e^{-4 t}+3 \cos (4 t)+3 \sin (4 t)$

Problem 7. (15 points)

a. (4 pts.) Find $\mathcal{L}\left\{e^{-2 t} \cos (3 t)-4 t^{2}\right\}$

Using the Laplace Transform table entries for $e^{a t} \cos (k t)$ and t^{n}, we find that

$$
\mathcal{L}\left\{e^{-2 t} \cos (3 t)-4 t^{2}\right\}=\mathcal{L}\left\{e^{-2 t} \cos (3 t)\right\}-4 \mathcal{L}\left\{t^{2}\right\}=\frac{s-(-2)}{(s-(-2))+3^{2}}-4 \frac{2!}{s^{2+1}}=\frac{s+2}{s^{2}+4 s+13}-\frac{8}{s^{3}}
$$

4 pts.
b. (5 pts.) Find $\mathcal{L}\{f(t)\}$ where

$$
\begin{gathered}
f(t)= \begin{cases}\sin (t) & \text { if } t<2 \pi \\
0 & \text { if } t \geq 2 \pi\end{cases} \\
f(t)=[1-u(t-2 \pi)] \sin (t)=\sin (t)-u(t-2 \pi) \sin (t)=\sin (t)-u(t-2 \pi) \sin (t-2 \pi), 2 \text { pts. so } \\
\mathcal{L}\{f(t)\}=\mathcal{L}\{\sin (t)-u(t-2 \pi) \sin (t-2 \pi)\}=\frac{1}{s^{2}+1^{2}}-e^{-2 \pi s} \frac{1}{s^{2}+1}=\frac{1-e^{-2 \pi s}}{s^{2}+1} \text { 3 pts. }
\end{gathered}
$$

c. $(6$ pts. $)$ Find $\mathcal{L}^{-1}\left\{\frac{2 s+4}{s^{2}+4 s-5}\right\}$.

Use a partial fraction decomposition: $\frac{2 s+4}{s^{2}+4 s-5}=\frac{2 s+4}{(s+5)(s-1)}=\frac{A}{s+5}+\frac{B}{s-1} \Rightarrow$ $(s+5)(s-1)\left[\frac{2 s+4}{(s+5)(s-1)}\right]=(s+5)(s-1)\left[\frac{A}{s+5}+\frac{B}{s-1}\right] \Rightarrow$

$$
2 s+4=A(s-1)+B(s+5)=(A+B) s+(-A+5 B) \Rightarrow A+B=2,-A+5 B=4 \Rightarrow
$$

$$
A=1, B=1 \Rightarrow 4 \mathrm{pts}
$$

$$
\mathcal{L}^{-1}\left\{\frac{2 s+4}{s^{2}+4 s-5}\right\}=\mathcal{L}^{-1}\left\{\frac{1}{s+5}+\frac{1}{s-1}\right\}=\mathcal{L}^{-1}\left\{\frac{1}{s+5}\right\}+\mathcal{L}^{-1}\left\{\frac{1}{s-1}\right\}=e^{-5 t}+e^{t} \text { 2 pts. }
$$

Problem 8. (15 points)

Use the Laplace Transform to solve the following initial value problem:

$$
x^{\prime \prime}+4 x^{\prime}+8 x=0 \text { with } x(0)=0 \text { and } x^{\prime}(0)=2 .
$$

Solutions to this IVP not using the Laplace transform method will not receive any credit. Primes denote derivatives with respect to $t: x^{\prime}=d x / d t$ and $x^{\prime \prime}=d^{2} x / d t^{2}$.
$x^{\prime \prime}+4 x^{\prime}+8 x=0 \Rightarrow \mathcal{L}\left\{x^{\prime \prime}+4 x^{\prime}+8 x\right\}=\mathcal{L}\{0\} \Rightarrow \mathcal{L}\left\{x^{\prime \prime}\right\}+4 \mathcal{L}\left\{x^{\prime}\right\}+8 \mathcal{L}\{x\}=03$ pts.
$\Rightarrow s^{2} \mathcal{L}\{x\}-s x(0)-x^{\prime}(0)+4[s \mathcal{L}\{x\}-x(0)]+4 \mathcal{L}\{x\}=03$ pts.
$s^{2} \mathcal{L}\{x\}-s \cdot 0-2+4[s \mathcal{L}\{x\}-0]+8 \mathcal{L}\{x\}=0 \Rightarrow\left(s^{2}+4 s+8\right) \mathcal{L}\{x\}=2 \Rightarrow$
$\mathcal{L}\{x\}=\frac{2}{s^{2}+4 s+8} 1$ pt. $\Rightarrow x=\mathcal{L}^{-1}\left\{\frac{2}{s^{2}+4 s+8}\right\}$.
The denominator is an irreducible quadratic (complex roots), so we need to complete the square: $s^{2}+4 s+8=(s+2)^{2}+4$.
Therefore, $\Rightarrow x=\mathcal{L}^{-1}\left\{\frac{2}{(s+2)^{2}+4}\right\}=e^{-2 t} \sin (2 t)$ using the table entry for $e^{a t} \sin (k t) .8 \mathrm{pts}$.

