
92.236 Engineering Differential Equations Final Exam Solutions

Spring 2014

Problem 1. (5+5 pts.)

The first-order differential equation xy′ = −y is separable, linear, exact, and homogeneous. Find
its general solution by using any two different of the above four methods.

Using the solution procedure for separable first-order d.e.’s: x
dy

dx
= −y ⇒ dy

y
= −dx

x
2 pts.

⇒
∫

dy

y
= −

∫
dx

x
⇒ ln(y) = − ln(x) + c1 ⇒ eln(y) = e− ln(x)+c1 = e− ln(x)

︸ ︷︷ ︸

=x−1

ec1
︸︷︷︸

=c

⇒ y = cx−1 3 pts.

Using the solution procedure for linear first-order d.e.’s: First write the equation in standard form.

xy′ = −y ⇒ xy′ + y = 0 ⇒ y′ +

(
1

x

)

y = 0 1 pt.

Next, find the integrating factor: ρ(x) = e
∫

1/x dx = eln(x) = x. 1 pt.

Multiply both sides of the standard form of the d.e. by the integrating factor:

x

[

y′ +

(
1

x

)

y

]

= x · 0 ⇒ xy′ + y = 0. 1 pt.

Use the Product Rule backwards to rewrite the d.e. as
d

dx
[xy] = 0. 1 pt.

Integrating both sides, we obtain xy =

∫

0 dx = 0 + c. 1 pt.

Therefore, xy = c, so y = cx−1.

Using the solution procedure for homogeneous first-order d.e.’s: xy′ = −y ⇒ y′ = −y

x
. Let v = y/x.

Replace y′ by v + xv′ and replace y by xv: y′ = −y

x
⇒ v + xv′ = −xv

v
= −v 2 pts.

⇒ x
dv

dx
= −2v ⇒ dv

v
= −2

dx

x
⇒

∫
dv

v
= −2

∫
dx

x
⇒ ln(v) = −2 ln(x) + c1 ⇒ eln(v) = e−2 ln(x)+c1 2 pts.

= e−2 ln(x)
︸ ︷︷ ︸

=x−2

ec1
︸︷︷︸

=c

⇒ v = cx−2 ⇒ y

x
= cx−2 ⇒ 1 pt. y = cx−1

Using the solution procedure for exact first-order d.e.’s: First write the equation in standard form.

xy′ = −y ⇒ y
︸︷︷︸

M

+ x
︸︷︷︸

N

y′ = 0

∂M

∂y
= 1 and

∂N

∂x
= 1 so the d.e. is exact. The solution of the d.e. is f(x, y) = c where f satisfies

the conditions
∂f

∂x
= M = y and

∂f

∂y
= N = x.

∂f

∂x
= y ⇒ f =

∫

y ∂x = yx + g(y) 2 pts.

⇒ ∂f

∂y
=

∂

∂y
[yx + g(y)] = x + g′(y). But

∂f

∂y
= x so x + g′(y) = x ⇒ g′(y) = 0 ⇒ g(y) = 0. 2 pts.

Therefore, f(x, y) = yx and the solution of the d.e. is yx = c ⇒ y = cx−1 1 pt.



Problem 2. (15 pts.)

Solve the following initial value problem (IVP) for x > 0: x2y′ − xy = 2y2 with y(1) = −1.

x2y′ − xy = 2y2 ⇒ y′ =
2y2 + xy

x2
. This is a homogeneous d.e. because y′ equals a rational function

in which each term has the same degree (2). 3 pts.

Let v = y/x. Replace y′ by v + xv′ and replace y by xv:

y′ =
2y2 + xy

x2
⇒ v + xv′ =

2(xv)2 + x(xv)

x2
=

x2
(

2v2 + v
)

x2
= 2v2 + v ⇒ x

dv

dx
= 2v2 5 pts.

⇒ dv

v2
=

2 dx

x
⇒ v−1

−1
= 2 ln(x) + c ⇒ −1

v
= 2 ln(x) + c ⇒ −x

y
= 2 ln(x) + c 5 pts.

y(1) = −1 ⇒ − 1

−1
= 2 ln(1) + c ⇒ c = 1 2 pt. Therefore

−x

y
= 2 ln(x) + 1 ⇒ y = − x

2 ln(x) + 1

Problem 3. (10 pts.) Consider the expansion-contraction equation:
dP

dt
= P (10− P )(P − 20).

a. Find the critical points of this equation and sketch the phase line. Determine the stability of
the critical points and mark the results on the phase line, along with arrows that indicate the

sign of the derivative
dP

dt
.

P (10 − P )(P − 20) = 0 ⇒ the critical points are 0, 10, and 20 1 pt.

The three critical points divide the phase line into 4 intervals: P > 20, 10 < P < 20, 0 < P < 10
and P < 0.
dP

dt

∣
∣
∣
∣
x=30

= 30(10− 30)(30− 20) < 0, so the direction arrow points down for P > 20.

dP

dt

∣
∣
∣
∣
P=15

= 15(10− 15)(15− 20) > 0, so the direction arrow points up for 10 < P < 20.

dP

dt

∣
∣
∣
∣
x=5

= 5(10− 5)(5− 20) < 0, so the direction arrow points down for 0 < P < 10.

dP

dt

∣
∣
∣
∣
x=−10

= (−10)(10− (−10))(−10− 20) > 0, so the direction arrow points up for P < 0.

4 pts.

0

10

20

P

From the phase line we can see that both 0 and 20 are stable but 10 is unstable . 2 pts.

b. For each of the initial conditions P (0) = 5, P (0) = 15, and P (0) = 25, state where the

corresponding particular solutions are headed as t → ∞, that is, find lim
t→∞

P (t).



Since 5 lies in the interval 0 < P < 10, we can see from the phase line that P (0) = 5 ⇒ P (t) → 0

as t increases. 1 pt.

Since 15 lies in the interval 10 < P < 20, we can see from the phase line that P (0) = 15 ⇒ P (t) → 20

as t increases. 1 pt.

Since 25 lies in the interval P > 20, we can see from the phase line that P (0) = 25 ⇒ P (t) → 20

as t increases. 1 pt.

Problem 4. (15 points)

A 20-liter tank initially contains 10 liters of water in which 5 grams of salt are dissolved. A solution
containing 20 grams of salt per liter is pumped into the tank at the rate of 2 liters per minute, and

the well-mixed solution is pumped out of the tank at the rate of 1 liter per minute. How much salt
will the tank contain when it is full?

Let t denote time (in minutes) and let x denote the amount of salt in the tank at time t.

dx

dt
= rate in - rate out 1 pt.

= (flow rate in)(concentration in) - (flow rate out)(concentration out), so

dx

dt
=

(

2
liters

minute

) (

20
g

liter

)

−
(

1
liters

minute

) (
x g

(10 + t) liters

)

. 5 pts.

(The volume in the tank at time t is initial volume + t (flow rate in - flow rate out) = 10+(2−1)t
liters.)

Initially there are 5 grams of salt in the tank, so x(0) = 5

Therefore, the initial value problem describing this mixing problem is
dx

dt
= 40− x

10 + t
with x(0) = 5.

The d.e. is linear. First write the equation in standard form.

dx

dt
= 40 − x

10 + t
⇒ dx

dt
+

(
1

10 + t

)

x = 40 ⇒ 1 pt.

Next, find the integrating factor: ρ(t) = e
∫

1/(10+t) dt = eln(10+t) = 10 + t. 3 pts.

Multiply both sides of the standard form of the d.e. by the integrating factor:

(10 + t)

[
dx

dt
+

(
1

10 + t

)

x

]

= 40(10 + t). 1 pt.

Use the Product Rule backwards to rewrite the d.e. as
d

dt
[(10 + t)x] = 40(10 + t). 1 pt.

Integrating both sides, we obtain (10 + t)x =

∫

40(10 + t) dt = 20(10 + t)2 + c. 1 pt.

x(0) = 5 ⇒ (10 + 0)5 = 20(10 + 0)2 + c ⇒ c = −1950 1 pt. so (10 + t)x = 20(10 + t)2 − 1950

The tank is full at time t = 10 minutes. At t = 10 we have (10 + 10)x = 20(10 + 10)2 − 1950 ⇒
x(10) = 302.5 grams 1 pt.

Problem 5. (5+5 pts.) Find the general solution to each of the following third-order linear homoge-
neous differential equations:

a. y′′′ − 8y′′ + 16y′ = 0

The characteristic equation is r3 − 8r2 + 16r = 0 ⇒ r
(

r2 − 8r + 16
)

= 0 ⇒ r(r − 4)2 = 0 ⇒



r = 0 or r = 4 (double root) 2 pts.

Therefore, y = c1e
0x + c2e

4x + c3xe4x, or y = c1 + c2e
4x + c3xe4x . 3 pts.

b. y′′′ − y′ = 0

The characteristic equation is r3 − r = 0 ⇒ r
(

r2 − 1
)

= 0 ⇒ r(r + 1)(r − 1) = 0 ⇒
r = 0, r = −1, or r = 1 2 pts.

Therefore, y = c1e
0x + c2e

−1·x + c3e
1x or y = c1 + c2e

−x + c3e
x . 3 pts.

Problem 6. (15 points)

Consider a forced, undamped mass-spring system with mass m = 1 kg, spring constant k = 9
N/m, and an external force Fext(t) = 10 cos(2t) N. Find the position function x(t) for the initial

conditions x(0) = 2 and x′(0) = 3.

The d.e. modeling a mass-spring system is mx′′ + cx′ + kx = Fext(t), where m denotes the mass of
the object, c denotes the damping coefficient, k denotes the spring constant, and Fext(t) denotes the

external force. Substituting the given parameter values, we obtain the equation x′′ + 9x = 10 cos(2t)
3 pts.

Step 1. Find xc by solving the homogeneous d.e. x′′ + 9x′ = 0.

Characteristic equation: r2 + 9 = 0 ⇒ r2 = −9 ⇒ r =
√
−9 = ±3i.

Therefore, xc = c1 cos(3t) + c2 sin(3t). 3 pts.

Step 2. Find xp using either the Method of Undetermined Coefficients or the Method of Variation

of Parameters.

Method 1. Undetermined Coefficients.

Since the nonhomogeneous term in the d.e. (10 cos(2t)) is a cosine function, we guess that xp is

the sum a cosine and sine with the same frequency as the cosine function in the nonhomogeneous
term: xp = A cos(2t)+ B sin(2t). No term in this guess duplicates a term in xc, so there is no need

to modify the guess. 2 pts.

x = A cos(2t) + B sin(2t) ⇒ x′ = −2A sin(2t) + 2B cos(2t) ⇒ x′′ = −4A cos(2t) − 4B sin(2t).

Therefore, the left side of the d.e. is
x′′ + 9x = −4A cos(2t) − 4B sin(2t) + 9 [A cos(2t) + B sin(2t)] = 5A cos(2t) + 5B sin(2t). We want

this to equal the nonhomogeneous term 10 cos(2t), so 5A = 10, and 5B = 0 ⇒ A = 2 and B = 0.
Therefore, xp = 2 cos(2t). 4 pts.

Method 2. Variation of Parameters.

From xc we obtain two independent solutions of the homogeneous d.e: x1 = cos(3t) and

x2 = sin(3t). The Wronskian is given by W (x) =

∣
∣
∣
∣
∣

x1 x2

x′

1 x′

2

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

cos(3t) sin(3t)

−3 sin(3t) 3 cos(3t)

∣
∣
∣
∣
∣

= cos(3t) (3 cos(3t))− (−3 sin(3t))(sin(3t)) = 3 cos2(3t) + 3 sin2(3t) = 3
[

cos2(3t) + sin2(3t)
]

= 3. 1 pt.

u1 =

∫ −x2Fext(t)

W (t)
dx = −

∫
sin(3t) (10 cos(2t))

3
dx = −10

3

∫

sin(3t) cos(2t) dt

= −10

3

[

−cos(t)

2
− cos(5t)

10

]

=
5

3
cos(t) +

1

3
cos(5t) using entry 31 from the Table of Integrals. 2 pts.

u2 =

∫
x1Fext(t)

W (t)
dx =

∫
cos(3t) (10 cos(2t))

3
dx =

10

3

∫

cos(3t) cos(2t) dt



=
10

3

[
sin(t)

2
+

sin(5t)

10

]

=
5

3
sin(t) +

1

3
sin(5t) using entry 30 from the Table of Integrals. 2 pts.

Therefore, xp = u1x1 + u2x2 =

[
5

3
cos(t) +

1

3
cos(5t)

]

cos(3t) +

[
5

3
sin(t) +

1

3
sin(5t)

]

sin(3t)

=
5

3
[cos(t) cos(3t) + sin(t) sin(3t)] +

1

3
[cos(5t) cos(3t) + sin(5t) sin(3t)] =

5

3
cos(t − 3t) +

1

3
cos(5t − 3t)

=
5

3
cos(2t) +

1

3
cos(2t) = 2 cos(2t) 1 pt.

Step 3. x = xc + xp, so x = c1 cos(3t) + c2 sin(3t) + 2 cos(2t). 1 pt.

Step 4. Use the initial conditions to find c1 and c2.

x = c1 cos(3t) + c2 sin(3t) + 2 cos(2t) ⇒ x′ = −3c1 sin(3t) + 3c2 cos(3t) − 4 sin(2t)

x(0) = 2 ⇒ 2 = c1 cos(0) + c2 sin(0) + 2 cos(0) = c1 + 2 ⇒ c1 = 0

x′(0) = 3 ⇒ 3 = −3c1 sin(0) + 3c2 cos(0)− 4 sin(0) = 3c2 ⇒ c2 = 1 2 pts.

Therefore, y = sin(3t) + 2 cos(2t).

Problem 7. (5+5 points) Find the inverse Laplace transforms of the following two functions:

a.
s + 2

s2 + 4

L−1
{

s + 2

s2 + 4

}

= L−1
{

s

s2 + 4

}

+ L−1
{

2

s2 + 4

}

= cos(2t) + sin(2t)

using the Laplace Transform table entries for sin(kt) and cos(kt) with k = 2.

b. Find
s

(s + 2)2 + 4
.

L−1
{

s

(s + 2)2 + 4

}

= L−1
{

s + 2 − 2

(s + 2)2 + 4

}

= L−1
{

s + 2

(s + 2)2 + 4

}

− L−1
{

2

(s + 2)2 + 4

}

= e−2t cos(2t)− e−2t sin(2t) using the Laplace Transform table entries for eat sin(kt) and

eat cos(kt) with a = −2 and k = 2.

Problem 8. (15 points)

Use the Laplace Transform to solve the following IVP: x′′ − x′ = 1; x(0) = 2; x′(0) = 1

Solutions not using the Laplace transform method will not receive any credit.

x′′ − x′ = 1 ⇒ L
{

x′′ − x′
}

= L{1} ⇒ L
{

x′′
}

−L
{

x′
}

=
1

s
3 pts.

⇒
[

s2L{x} − sx(0) − x′(0)
]

− [sL{x} − x(0)] =
1

s
3 pts.

[

s2L{x} − s · 2 − 1
]

− [sL{x} − 2] =
1

s
⇒

(

s2 − s
)

L{x} =
1

s
+ 2s − 1 =

1 + 2s2 − s

s
=

2s2 − s + 1

s
⇒

L{x} =
2s2 − s + 1

s (s2 − s)
=

2s2 − s + 1

s2(s − 1)
1 pt. ⇒ x = L−1

{

2s2 − s + 1

s2(s − 1)

}

.

Use a partial fraction decomposition:
2s2 − s + 1

s2(s − 1)
=

A

s
+

B

s2
+

C

s − 1



s2(s − 1)

[

2s2 − s + 1

s2(s − 1)

]

= s2(s − 1)

[
A

s
+

B

s2
+

C

s − 1

]

⇒

2s2 − s + 1 = As(s − 1) + B(s − 1) + Cs2 = As2 − As + Bs − B + Cs2 = (A + C)s2 + (−A + B)s − B

⇒ A + C = 2, −A + B = −1, −B = 1 ⇒ A = 0, B = −1, C = 2. 6 pts.

Therefore, x = L−1
{

0

s
+

−1

s2
+

2

s − 1

}

= −L−1
{

1

s2

}

+ 2L−1
{

1

s − 1

}

⇒ x = −t + 2et 2 pts.


