92.236 Engineering Differential Equations Practice Exam $# 2$ Solutions Spring 2015

Problem 1. (20 points) Consider the autonomous differential equation $\frac{dx}{dt}$ $\frac{dx}{dt} = x^3 + 3x^2.$

a. Find all critical points (equilibrium solutions) of this d.e.

$$
x^{3} + 3x^{2} = 0 \Rightarrow x^{2}(x+3) = 0 \Rightarrow \boxed{\text{the critical points are -3 and 0}} \boxed{3 \text{ pts.}}
$$

b. Draw the phase line (phase diagram) for this d.e. $|8 \text{ pts.}$

The three critical points divide the phase line into 3 intervals: $x > 0$, $-3 < x < 0$, and $x < -3$. $\left| \frac{dx}{x} \right|$ \overline{dt} $\Bigg|_{x=1}$ $= 1²(1+3) > 0$, so the direction arrow points up for $x > 0$. dx dt $\Bigg|_{x=-1}$ $=(-1)^{2}(-1+3) > 0$, so the direction arrow points up for $-3 < x < 0$. dx dt $\overline{}$ $\Big|_{x=-4}$ $= (-4)^2(-4+3) < 0$, so the direction arrow points down for $x < -3$.

c. Determine whether each critical point is stable or unstable.

From the phase line we can see that $\boxed{\boxed{\text{both 0 and } -3 \text{ are unstable}}$. 2 pts.

d. If $x(0) = -2$, what value will $x(t)$ approach as t increases?

Since -2 lies in the interval $-3 < x < 0$, we can see from the phase line that $||x(t) \rightarrow 0$ as t increases. $\vert 3 \rangle$ pts.

e. Sketch typical solution curves of the given d.e. Please draw these curves in a graph separate from your phase line. Be sure to include graphs of all equilibrium solutions, and be sure to label the axes. $\vert 4 \rangle$ pts.

See the figure above.

Problem 2. (20 points) Solve the following differential equations:

a. $y'' + 8y' + 15y = 0$ Characteristic equation: $r^2 + 8r + 15 = 0 \Rightarrow (r+5)(r+3) = 0 \Rightarrow$ $r = -5$ or $r = -3$. $\boxed{4 \text{ pts.}}$ Therefore, $y = c_1 e^{-5x} + c_2 e^{-3x}$ $\boxed{6 \text{ pts.}}$ b. $y'' + 6y' + 9y = 0$ Characteristic equation: $r^2 + 6r + 9 = 0 \Rightarrow (r+3)^2 = 0 \Rightarrow$ $r = -3$ (repeated root). $\boxed{4 \text{ pts.}}$ Therefore, $\boxed{y = c_1 e^{-3x} + c_2 x e^{-3x}}$ 6 pts.

Problem 3. (20 points) Solve the following initial value problem.

$$
x^4 - 4y^4 + 4xy^3 \frac{dy}{dx} = 0, \ \ y(1) = 2.
$$

 $x^4 - 4y^4 + 4xy^3 \frac{dy}{dx}$ dx $= 0 \Rightarrow \frac{dy}{dx}$ dx $=\frac{4y^4-x^4}{4x^3}$ $\frac{d^2}{dx^2}$. dy/dx equals a rational function, and every term has the same degree (4) . Therefore, this d.e. is homogeneous. $\boxed{4 \text{ pts.}}$ We introduce the new variable $v = y/x$. In the d.e. we replace $\frac{dy}{dx}$ $\frac{dy}{dx}$ by $v + x$ dv $\frac{d}{dx}$ and we replace y by xv : dy $\frac{dy}{dx} =$ $4y^4 - x^4$ $rac{y^4 - x^4}{4xy^3} \Rightarrow v + x\frac{dv}{dx}$ $\frac{d}{dx} =$ $4(xv)^4 - x^4$ $4x(xv)^3$ $\sqrt{4 \text{ pts.}}$ = $x^4(4v^4-1)$ $\frac{16}{4x^4v^3}$ = $4v^4 - 1$ $\frac{v^4-1}{4v^3} = v - \frac{1}{4v}$ $rac{1}{4v^3} \Rightarrow x\frac{dv}{dx}$ $\frac{d}{dx} =$ −1 $4v^3$ \overline{z} $\overline{$ 3 pts. −1 $\sqrt{1}$

$$
\Rightarrow 4v^3 dv = \frac{-1}{x} dx \Rightarrow \int 4v^3 dv = \int \frac{-1}{x} dx \Rightarrow \underbrace{v^4 = -\ln(x) + c}_{3 \text{ pts.}} \Rightarrow \underbrace{\left(\frac{y}{x}\right)^4 = -\ln(x) + c}_{2 \text{ pts.}}
$$

The initial condition $y(1) = 2 \Rightarrow (2/1)^4 = -\ln(1) + c \Rightarrow c = 16$ 2 pts. Therefore, $\left(\frac{y}{y}\right)$ \boldsymbol{x} \setminus^4 $=-\ln(x) + 16 \Rightarrow \frac{y}{x}$ \boldsymbol{x} $= [16 - \ln(x)]^{1/4} \Rightarrow ||y = x [16 - \ln(x)]^{1/4} ||.$

Problem 4. (20 points) Solve the following initial value problem.

$$
2xy + 4x3 + [x2 + 6y2] \frac{dy}{dx} = 0, \quad y(-1) = 1.
$$

This d.e. is not separable, linear, or homogeneous. Test whether the d.e. is exact:

$$
\underbrace{2xy + 4x^3}_{M} + \underbrace{\left[x^2 + 6y^2\right]}_{N} \frac{dy}{dx} = 0
$$

$$
\frac{\partial M}{\partial y} = \frac{\partial}{\partial y} \left[2xy + 4x^3 \right] = 2x. \left[\frac{1 \text{ pt.}}{\partial x} \right] = \frac{\partial}{\partial x} \left[x^2 + 6y^2 \right] = 2x. \left[\frac{1 \text{ pt.}}{\partial x} \right]
$$
\nSince $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$, the d.e. is exact. $\frac{3 \text{ pts.}}{\partial y}$ Therefore, the solution of the d.e. is $f(x, y) = c$, where the function f satisfies the conditions $\frac{\partial f}{\partial x} = M = 2xy + 4x^3$ and $\frac{\partial f}{\partial y} = N = x^2 + 6y^2$.
\n $\frac{\partial f}{\partial x} = 2xy + 4x^3 \Rightarrow f = \int (2xy + 4x^3) \partial x = x^2y + x^4 + g(y) \boxed{6 \text{ pts.}}$
\n $\Rightarrow \frac{\partial f}{\partial y} = \frac{\partial}{\partial y} \left[x^2y + x^4 + g(y) \right] = x^2 + g'(y)$
\nBut $\frac{\partial f}{\partial y} = N = x^2 + 6y^2 \Rightarrow x^2 + g'(y) = x^2 + 6y^2 \Rightarrow g'(y) = 6y^2 \Rightarrow g(y) = 2y^3 \Rightarrow$
\n $f = x^2y + x^4 + 2y^3 \boxed{6 \text{ pts.}}$

Therefore, the solution of the d.e. is $x^2y + x^4 + 2y^3 = c \overline{\smash{2 \text{ pts.}}\vphantom{2}}$ $y(-1) = 1 \Rightarrow (-1)^2(1) + (-1)^4 + 2(1)^3 = c \Rightarrow c = 4.$ 1 pt. Therefore, the solution of the initial value problem is $\left| \frac{x^2y + x^4 + 2y^3}{x^2 + x^4 + 2y^3} \right|$

Problem 5. (10 points) Let P denote the population of a colony of tribbles. Suppose that β (the number of births per week per tribble) is proportional to P and that δ (the number of deaths per week per tribble) equals 0. Suppose the initial population is 2 and the population after 5 weeks is 4. When will the population reach 20?

$$
\frac{dP}{dt} = \beta P - \delta P \boxed{1 \text{ pt.}}
$$

From the given information we have $\beta = kP$ and $\delta = 0$ where k is a positive constant. [1 pt.

Therefore, $\frac{dP}{dt} = (kP) P - (0)(P) \Rightarrow \frac{dP}{dt} = kP^2 \boxed{1 \text{ pt.}}$ This is a separable d.e: $\frac{dP}{dt} = kP^2 \Rightarrow \frac{dP}{P^2}$ $\overline{P^2}$ $= k \, dt \Rightarrow \int P^{-2} \, dP = \int k \, dt \Rightarrow \frac{P^{-1}}{1}$ −1 $= kt + c \Rightarrow$ $-P^{-1} = kt + c.$ 4 pts. $P(0) = 2 \Rightarrow -2^{-1} = k(0) + c \Rightarrow c = -1/2 \Rightarrow -P^{-1} = kt - 1/2 \boxed{1 \text{ pt.}}$ $P(5) = 4 \Rightarrow -4^{-1} = k(5) - 1/2 \Rightarrow 5k = 1/2 - 1/4 = 1/4 \Rightarrow k = 1/20 \Rightarrow -P^{-1} = t/20 - 1/2$ 1 pt. $P(t) = 20 \Rightarrow -20^{-1} = t/20 - 1/2 \Rightarrow -1/20 = t/20 - 1/2 \Rightarrow t/20 = 1/2 - 1/20 = 9/20 \Rightarrow t = 9$ weeks 1 pt.