Problem 1. (20 points) Consider the autonomous differential equation $\frac{dx}{dt} = 4x^2 - x^4$.

a. Find all critical points (equilibrium solutions) of this d.e.

$$
4x2 - x4 = 0 \Rightarrow x2 (4 - x2) = 0 \Rightarrow x2 (2 + x)(2 - x) = 0 \Rightarrow
$$

[the critical points are -2, 0 and 2] 3 pts.]

b. Draw the phase line (phase diagram) for this d.e. 8 pts.

The three critical points divide the phase line into 4 intervals: $x > 2$, $0 < x < 2$, $-2 < x <$ 0, and $x < -2$.
 $\frac{dx}{x}$ = $3^2(2)$. dx dt $\Big|_{x=3}$ $= 3²(2+3)(2-3) < 0$, so the direction arrow points down for $x > 2$. dx dt $\Bigg|_{x=1}$ $= 1^2(2+1)(2-1) > 0$, so the direction arrow points up for $0 < x < 2$. dx dt $\Bigg|_{x=-1}$ $= (-1)^2(2-1)(2-(-1)) > 0$, so the arrow points up for $-2 < x < 0$. dx dt $\Big|_{x=-3}$ $=(-3)^{2}(2-3)(2-(-3))$ < 0, so the arrow points down for $x < -2$.

c. Determine whether each critical point is stable or unstable.

Since -1 lies in the interval $-2 < x < 0$, we can see from the phase line that $\left| x(t) \to 0 \right|$ as t increases. 3 pts.

e. Sketch typical solution curves of the given d.e. Please draw these curves in a graph separate from your phase line. Be sure to include graphs of all equilibrium solutions, and be sure to label the axes. 3 pts.

Problem 2. (20 points) Solve the following differential equations:

a. $y'' - 10y' + 25y = 0$ Characteristic equation: $r^2 - 10r + 25 = 0 \Rightarrow (r - 5)^2 = 0 \Rightarrow$ $r = 5$ (repeated root). $\boxed{4 \text{ pts.}}$ Therefore, $||y = c_1 e^{5x} + c_2 x e^{5x}||$ 6 pts. b. $y'' + y' - 2y = 0$ Characteristic equation: $r^2 + r - 2 = 0 \Rightarrow (r+2)(r-1) = 0 \Rightarrow$ $r = -2$ or $r = 1$. $\boxed{4 \text{ pts.}}$ Therefore, $\boxed{y = c_1 e^{-2x} + c_2 e^x}$ $\boxed{6 \text{ pts.}}$

Problem 3. (20 points) Solve the following initial value problem.

$$
3x^{2} + 6xy + [3x^{2} + 2y] \frac{dy}{dx} = 0, \quad y(1) = 0.
$$

$$
\frac{3x^2 + 6xy}{M} + \frac{3x^2 + 2y}{N} \frac{dy}{dx} = 0.
$$
\n
$$
\frac{\partial M}{\partial y} = \frac{\partial}{\partial y} \left[3x^2 + 6xy \right] = 6x. \boxed{1 \text{ pt.}} \quad \frac{\partial N}{\partial x} = \frac{\partial}{\partial x} \left[3x^2 + 2y \right] = 6x. \boxed{1 \text{ pt.}}
$$
\nSince $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$, the d.e. is exact. $\boxed{3 \text{ pts.}}$ Therefore, the solution of the d.e. is $f(x, y) = c$, where the function f satisfies the conditions $\frac{\partial f}{\partial x} = M = 3x^2 + 6xy$ and $\frac{\partial f}{\partial y} = N = 3x^2 + 2y$.
\n $\frac{\partial f}{\partial x} = 3x^2 + 6xy \Rightarrow f = \int (3x^2 + 6xy) \, dx = x^3 + 3x^2y + g(y) \boxed{6 \text{ pts.}}$
\n $\Rightarrow \frac{\partial f}{\partial y} = 3x^2 + g'(y).$ But $\frac{\partial f}{\partial y} = N = 3x^2 + 2y$, so $3x^2 + g'(y) = 3x^2 + 2y \Rightarrow g'(y) = 2y \Rightarrow g(y) = y^2 \boxed{5 \text{ pts.}}$. Therefore, $f = x^3 + 3x^2y + y^2$, so the solution of the d.e. is

 $x^3 + 3x^2y + y^2 = c.$ 3 pts. The initial condition $y(1) = 0 \Rightarrow 1^3 + 3(1)^2(0) + 0^2 = c \Rightarrow c = 1$ 1 pt. Therefore, the solution of the given IVP is $\left| \int x^3 + 3x^2y + y^2 = 1 \right|$

Problem 4. (20 points) Solve the following initial value problem.

$$
x^3 + y^3 - xy^2 \frac{dy}{dx} = 0, \ \ y(1) = 3.
$$

 $x^3 + y^3 - xy^2 \frac{dy}{dx} = 0 \Rightarrow \frac{dy}{dx} = \frac{x^3 + y^3}{xy^2}$ $\frac{y}{xy^2}$. Since dy/dx equals a rational function in which each term has the same degree (3), the d.e. is homogeneous $\overline{5}$ pts. We introduce the new variable $v = y/x$. In the d.e. we replace $\frac{dy}{dx}$ by $v + x \frac{dv}{dx}$ and we replace y by xv:

$$
\frac{dy}{dx} = \frac{x^3 + y^3}{xy^2} \Rightarrow v + x\frac{dv}{dx} = \frac{x^3 + (xv)^3}{x(xv)^2} = \frac{x^3(1+v^3)}{x^3v} = \frac{1+v^3}{v^2} = \frac{1}{v^2} + v \Rightarrow \frac{dv}{dx} = \frac{1}{v^2}
$$
\n
$$
\Rightarrow v^2 dv = \frac{1}{x} dx \Rightarrow \int v^2 dv = \int \frac{1}{x} dx \Rightarrow \frac{v^3}{3} = \ln(x) + c \Rightarrow \frac{(y/x)^3}{3} = \ln(x) + c \Rightarrow
$$
\n
$$
\boxed{2 \text{ pts.}}
$$
\n
$$
\boxed{2 \text{ pts.}}
$$
\n
$$
\boxed{3 \text{ pts.}}
$$
\n
$$
\boxed{2 \text{ pts.}}
$$

 $(y/x)^3 = 3\ln(x) + 3c$ \sum_{c_1} . The initial condition $y(1) = 3 \Rightarrow (3/1)^3 = 3 \ln(1) + c_1 \Rightarrow c_1 = 27 \boxed{1 \text{ pt.}}$ Therefore, $(y/x)^3 = 3\ln(x) + 27 \Rightarrow (y/x) = [3\ln(x) + 27]^{1/3} \Rightarrow ||y = x[3\ln(x) + 27]^{1/3}||.$

Problem 5. (10 points) Let P denote the population of a colony of dodos. Suppose that the birth rate β (number of births per week per dodo) equals 0 and that the death rate δ (number of deaths per week per dodo) is constant. Suppose the initial population is 100, and after ten weeks the population is 50. What is the population after 43 weeks?

$$
\frac{dP}{dt} = \beta P - \delta P = (0)P - (k)P = -kP.\boxed{3 \text{ pts.}}
$$
\nThis is a separable d.e:
$$
\frac{dP}{dt} = -kP \Rightarrow \frac{dP}{P} = -k dt \boxed{1 \text{ pt.}}
$$
\n
$$
\Rightarrow \int P^{-1} dP = \int -k dt \Rightarrow \ln(P) = -kt + c \Rightarrow P = e^{-kt + c} = e^{-kt} \underbrace{e^c}_{c_1}.\boxed{3 \text{ pts.}}
$$
\n
$$
P(0) = 100 \Rightarrow 100 = e^0 c_1 \Rightarrow c_1 = 100 \boxed{1 \text{ pt.}}
$$
\n
$$
\Rightarrow P = 100e^{-kt}. \ P(10) = 50 \Rightarrow 50 = 100e^{-10k} \Rightarrow \frac{50}{100} = e^{-10k} \Rightarrow \ln(0.5) = \ln(e^{-10k}) = -10k \Rightarrow k = -\frac{\ln(0.5)}{10}
$$
\n
$$
\boxed{1 \text{ pt.}}
$$

.

Therefore, $\left\| P(43) = 100e^{-43k} \approx 5 \text{ dodos} \right\| \boxed{1 \text{ pt.}}$.