Problem 1. 20 points Consider the autonomous differential equation $\frac{d x}{d t}=2 x^{2}-x^{3}$.
a. Find all critical points (equilibrium solutions) of this d.e.
$2 x^{2}-x^{3}=0 \Rightarrow x^{2}(2-x)=0 \Rightarrow$ the equilibrium solutions are $x=0$ and $x=2$ pts.
b. Draw the phase line (phase diagram) for this d.e. 8 pts.

The two equilibrium solutions divide the phase line into 3 intervals: $x>2,0<x<2$, and $x<0$.
$\left.\frac{d x}{d t}\right|_{x=3}=3^{2}(2-3)<0$, so the direction arrow points down for $x>2$.
$\left.\frac{d x}{d t}\right|_{x=1}=1^{2}(2-1)>0$, so the direction arrow points up for $0<x<2$.
$\left.\frac{d x}{d t}\right|_{x=-1}=(-1)^{2}(2-(-1))>0$, so the direction arrow points up for $x<0$.

c. Determine whether each critical point is stable or unstable.

From the phase line we can see that 2 is stable and 0 is unstable. 2 pts.
d. If $x(0)=3$, what value will $x(t)$ approach as t increases?

Since 3 lies in the interval $x>2$, we can see from the phase line that $x(t) \rightarrow 2$ as t increases. 3 pts.
e. Sketch typical solution curves of the given d.e. Please draw these curves in a graph separate from your phase line. Be sure to include graphs of all equilibrium solutions, and be sure to label the axes. 4 pts.
See the figure above.

Problem 2. (20 points) Solve the following differential equations:
a. $y^{\prime \prime}+6 y^{\prime}+5 y=0$

Characteristic equation: $r^{2}+6 r+5=0 \Rightarrow(r+5)(r+1)=0 \Rightarrow$
$r=-5$ or $r=-1.4$ pts. Therefore, $y=c_{1} e^{-5 x}+c_{2} e^{-x}$. 6 pts.
b. $y^{\prime \prime}-8 y^{\prime}+16 y=0$

Characteristic equation: $r^{2}-8 r+16=0 \Rightarrow(r-4)^{2}=0 \Rightarrow$ $r=4$ (double root). 4 pts. Therefore, $y=c_{1} e^{4 x}+c_{2} x e^{4 x}$ pts.

Problem 3. (20 points) Solve the following initial value problem.

$$
3 y^{2}+\left(x^{2}-3 x y\right) \frac{d y}{d x}=0, \quad y(1)=1
$$

$3 y^{2}+\left(x^{2}-3 x y\right) \frac{d y}{d x}=0 \Rightarrow \frac{d y}{d x}=\frac{3 y^{2}}{3 x y-x^{2}} . \quad d y / d x$ equals a rational function, and every term has the same degree (2). Therefore, this d.e. is homogeneous. 4 pts.
We introduce the new variable $v=y / x$. In the d.e. we replace $\frac{d y}{d x}$ by $v+x \frac{d v}{d x}$ and we replace y by $x v$:

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{3 y^{2}}{3 x y-x^{2}} \Rightarrow \underbrace{v+x \frac{d v}{d x}=\frac{3(x v)^{2}}{3 x(x v)-x^{2}}}_{4 \text { pts. }}=\frac{3 x^{2} v^{2}}{x^{2}(3 v-1)}=\frac{3 v^{2}}{3 v-1} \Rightarrow \\
& \underbrace{x \frac{d v}{d x}=\frac{3 v^{2}}{3 v-1}-v=\frac{3 v^{2}-v(3 v-1)}{3 v-1}=\frac{v}{3 v-1}} \\
& 3 \text { pts. } \\
& \underbrace{\Rightarrow \frac{3 v-1}{v} d v=\frac{1}{x} d x}_{2 \text { pts. }} \Rightarrow \int\left(3-\frac{1}{v}\right) d v=\int \frac{1}{x} d x \Rightarrow \underbrace{3 v-\ln (v)=\ln (x)+c}_{3 \text { pts. }} \Rightarrow \underbrace{\frac{3 y}{x}-\ln \left(\frac{y}{x}\right)=\ln (x)+c}_{2 \text { pts. }}
\end{aligned}
$$

The initial condition $y(1)=1 \Rightarrow \frac{3(1)}{1}-\ln \left(\frac{1}{1}\right)=\ln (1)+c \Rightarrow c=3$ 2pts..
Therefore,

$$
\frac{3 y}{x}-\ln \left(\frac{y}{x}\right)=\ln (x)+3
$$

Problem 4. (20 points) Solve the following initial value problem.

$$
x y^{2}+4 x^{3}+\left(x^{2} y+2 y\right) \frac{d y}{d x}=0, \quad y(1)=2
$$

This d.e. is not separable, linear, or homogeneous. Test whether the d.e. is exact:

$$
\underbrace{x y^{2}+4 x^{3}}_{M}+\underbrace{\left(x^{2} y+2 y\right)}_{N} \frac{d y}{d x}=0
$$

$\frac{\partial M}{\partial y}=\frac{\partial}{\partial y}\left[x y^{2}+4 x^{3}\right]=2 x y$. 1pt. $\frac{\partial N}{\partial x}=\frac{\partial}{\partial x}\left[x^{2} y+2 y\right]=2 x y .1 \mathrm{pt}$.
Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, the d.e. is exact. 3 pts. Therefore, the solution of the d.e. is $f(x, y)=c$, where the function f satisfies the conditions $\frac{\partial f}{\partial x}=M=x y^{2}+4 x^{3}$ and $\frac{\partial f}{\partial y}=N=x^{2} y+2 y$. $\frac{\partial f}{\partial x}=x y^{2}+4 x^{3} \Rightarrow f=\int\left(x y^{2}+4 x^{3}\right) \partial x=\frac{x^{2} y^{2}}{2}+x^{4}+g(y) 6$ pts.
$\Rightarrow \frac{\partial f}{\partial y}=\frac{\partial}{\partial y}\left[\frac{x^{2} y^{2}}{2}+x^{4}+g(y)\right]=x^{2} y+g^{\prime}(y)$
But $\frac{\partial f}{\partial y}=N=x^{2} y+2 y \Rightarrow x^{2} y+g^{\prime}(y)=x^{2} y+2 y \Rightarrow g^{\prime}(y)=2 y \Rightarrow g(y)=y^{2} \Rightarrow$ $f=\frac{x^{2} y^{2}}{2}+x^{4}+y^{2} 6$ pts.

Therefore, the solution of the d.e. is $\frac{x^{2} y^{2}}{2}+x^{4}+y^{2}=c 2 \mathrm{pts}$.
$y(1)=2 \Rightarrow \frac{1^{2} 2^{2}}{2}+1^{4}+2^{2}=c \Rightarrow c=7.1 \mathrm{pt}$.
Therefore, the solution of the initial value problem is $\frac{x^{2} y^{2}}{2}+x^{4}+y^{2}=7$
Problem 5. (10 points) Let P denote the population of a colony of tribbles. Suppose that the birth rate β (number of births per week per tribble) is proportional to \sqrt{P} and that the death rate δ (number of deaths per week per tribble) equals 0 . Suppose the initial population is 4 , and after two weeks the population is 9 . What is the population after 3 weeks?
$\frac{d P}{d t}=\beta P-\delta P=(k \sqrt{P}) P-(0) P=k P^{3 / 2} .3$ pts.
This is a separable d.e: $\frac{d P}{d t}=k P^{3 / 2} \Rightarrow \frac{d P}{P^{3 / 2}}=k d t \Rightarrow \int P^{-3 / 2} d P=\int k d t \Rightarrow-2 P^{-1 / 2}=k t+c$. 4 pts .
$P(0)=4 \Rightarrow-2(4)^{-1 / 2}=k(0)+c \Rightarrow c=-1 \Rightarrow-2 P^{-1 / 2}=k t-11 \mathrm{pt}$.
$P(2)=9 \Rightarrow-2(9)^{-1 / 2}=k(2)-1 \Rightarrow-\frac{2}{3}=2 k-1 \Rightarrow k=\frac{1}{6} .1 \mathrm{pt}$.
Therefore, $-2(P(3))^{-1 / 2}=\left(\frac{1}{6}\right)(3)-1=-\frac{1}{2} \Rightarrow(P(3))^{-1 / 2}=\frac{1}{4} \Rightarrow P(3)=16$ tribbles.

