Problem 1. (10 points)

Is $y(x)=x^{3}$ is a solution of the d.e. $y y^{\prime}=x^{5}+y$? Why or why not?
Left side of d.e: $y=x^{3} \Rightarrow y^{\prime}=3 x^{2} \Rightarrow y y^{\prime}=\left(x^{3}\right)\left(3 x^{2}\right)=3 x^{5} .4$ pts.
Right side of d.e: $y=x^{3} \Rightarrow x^{5}+y=x^{5}+x^{3}$. 3 pts.
Left side \neq right side, so $y(x)=x^{3}$ is not a solution of the d.e. $y y^{\prime}=x^{5}+y$
3 pts .

Problem 2. (15 points)

A ball is dropped from rest (initial velocity 0) from a height of 20 meters. How long does it take the ball to reach the ground? Use the value $10 \mathrm{~m} / \mathrm{s}^{2}$ for g, the acceleration due to gravity.

For objects moving in one dimension under constant acceleration, the velocity and position of the object are given by the formulas $v=a t+v_{0}$ and $x=\frac{1}{2} a t^{2}+v_{0} t+x_{0}$. 5 pts. Take $t=0$ to be the time the ball is dropped, take $x=0$ to be ground level, and take up to be the positive x direction. Then $a=-g, x_{0}=20 \mathrm{~m}$, and $v_{0}=0 \mathrm{~m} / \mathrm{s}$, so $x=-\frac{1}{2} g t^{2}+20$. 5pts. Set $x=0$ and solve for t to find the time when the ball hits the ground: $0=-\frac{1}{2} g t^{2}+20 \Rightarrow t=\sqrt{40 / g} \approx \sqrt{40 / 10}=$ 52 seconds. 5 pts.

Problem 3. (25 points)

Solve the following initial value problem:

$$
\frac{d y}{d x}=\frac{2 x^{2}+y}{x}, \quad y(1)=3 .
$$

$\frac{d y}{d x}=\frac{2 x^{2}+y}{x} \Rightarrow \frac{d y}{d x}=2 x+\frac{y}{x}$ This is a linear d.e. because y and $d y / d x$ appear just to the first power, multiplied by functions of x alone. 5 pts.
First write the equation in standard form:
$\frac{d y}{d x}=2 x+\frac{y}{x} \Rightarrow \frac{d y}{d x}-\left(\frac{1}{x}\right) y=2 x 3$ pts.
Next, find the integrating factor: $\rho(x)=e^{\int-1 / x d x}=e^{-\ln (x)}=x^{-1} .6$ pts.
Multiply both sides of the standard form of the d.e. by the integrating factor:
$x^{-1}\left[\frac{d y}{d x}-\left(\frac{1}{x}\right) y\right]=x^{-1}(2 x) \Rightarrow x^{-1} \frac{d y}{d x}-x^{-2} y=2.2$ pts.
Use the Product Rule backwards to rewrite the d.e. as $\frac{d}{d x}\left[x^{-1} y\right]=2.4$ pts.
Integrating both sides, we obtain $x^{-1} y=\int 2 d x=2 x+c$. 3 pts .
$y(1)=3 \Rightarrow 1^{-1}(3)=2(1)+c \Rightarrow c=12$ pts.

Therefore, $x^{-1} y=2 x+1$, so $y=2 x^{2}+x$.

Problem 4. (25 points)

Solve the following initial value problem:

$$
\frac{d y}{d x}=\frac{2 x y}{y^{2}+1}, \quad y(0)=1
$$

This is a separable d.e. 5 pts.
$\frac{d y}{d x}=\frac{2 x y}{y^{2}+1} \Rightarrow d y=\left(\frac{2 x y}{y^{2}+1}\right) d x \Rightarrow \frac{y^{2}+1}{y} d y=2 x d x .5$ pts.
$\Rightarrow \int \frac{y^{2}+1}{y} d y=\int 2 x d x \Rightarrow \int\left(y+\frac{1}{y}\right) d y=\int 2 x d x \Rightarrow \frac{y^{2}}{2}+\ln (y)=x^{2}+c .12$ pts.
$y(0)=1 \Rightarrow \frac{1^{2}}{2}+\ln (1)=0^{2}+c \Rightarrow c=\frac{1}{2} 3 \mathrm{pts}$.
$\Rightarrow \frac{y^{2}}{2}+\ln (y)=x^{2}+\frac{1}{2}$ or $y^{2}+2 \ln (y)=2 x^{2}+1$.

Problem 5. (15 points)

A tank initially contains 100 liters of water in which 200 grams of salt are dissolved. A salt solution containing 20 grams of salt per liter is pumped into the tank at the rate of 5 liters per minute, and the well-mixed solution is pumped out of the tank at the rate of 3 liters per minute.

Let t denote time (in minutes), and let x denote the amount of salt in the tank at time t (in grams). Write down the differential equation $\left(\frac{d x}{d t}=\right.$ something $)$ and initial condition describing this mixing problem.

DO NOT SOLVE THE INITIAL VALUE PROBLEM. JUST WRITE DOWN THE D.E. AND INITIAL CONDITION.

$\frac{d x}{d t}=$ rate in - rate out 3 pts.
$=($ flow rate in $)($ concentration in $)-($ flow rate out $)($ concentration out $), 3$ pts. so
$\frac{d x}{d t}=\underbrace{\left(5 \frac{\mathrm{~L}}{\min }\right)} \underbrace{\left(20 \frac{\mathrm{gm}}{\mathrm{L}}\right)}-\underbrace{\left(3 \frac{\mathrm{~L}}{\min }\right)} \underbrace{\left(\frac{x \mathrm{gm}}{(100+2 t) \mathrm{L}}\right)}_{5 \mathrm{p}}$.
(The volume in the tank at time t is initial volume $+t$ (flow rate in - flow rate out) $=100+(5-3) t$ liters.)
Initially there are 200 gm . of salt in the tank, so $x(0)=2001 \mathrm{pt}$. .
Therefore, the initial value problem describing this mixing problem is $\frac{d x}{d t}=100-\frac{3 x}{100+2 t}$ with $x(0)=200$.

