MATH.2360 Engineering Differential Equations Review Sheet for Exam #3

Section	You should
3.1, 3.2	• know that the general solution of a second-order linear homogeneous ode
	has the form $y = c_1y_1 + c_2y_2$, where y_1 and y_2 are independent solutions of
	the ode.
	• know that the general solution of a second-order linear nonhomogeneous
	ode has the form $y = y_c + y_p$ where y_c is the general solution of the
	corresponding homogeneous ode and y_p is a particular solution of the
	given nonhomogeneous ode
	• be able to find the values of the two arbitrary constants in the general
	solution of a second-order ode, given two initial conditions
	• be able to solve second-order linear homogeneous ode's with constant
	coefficients
3.3	• be able to solve n^{th} order linear homogeneous ode's with constant
	coefficients
3.4	• be able to formulate and solve the second-order linear homogeneous ode
	describing the unforced motion of a mass attached to a spring:
	mx'' + cx' + kx = 0
	• be able to express the solution to an undamped mass/spring problem
	in the form $x = C\cos(\omega_0 t - \alpha)$
	• be able to tell whether a system is overdamped, underdamped, or
	critically damped
	• be able to express the solution to an underdamped mass/spring problem
3.5	in the form $x = Ce^{-pt}\cos(\omega_1 t - \alpha)$ • be able to find a particular solution of a nonhomogeneous linear equation
5.0	• be able to find a particular solution of a nonhomogeneous linear equation using either the Method of Undetermined Coefficients or the Method of
	Variation of Parameters
3.6	be able to formulate and solve the second-order linear nonhomogeneous
5.0	ode describing the forced motion of a mass attached to a spring:
	mx'' + cx' + kx = F(t)
	• be able to find the steady-state periodic solution and the transient solution
	of a damped, forced mass-spring system
3.7	 be able to formulate and solve the second-order linear nonhomogeneous
	ode describing the forced motion of an LCR circuit:
	$LQ'' + RQ' + \frac{1}{C}Q = E(t)$
	$LQ + RQ + \frac{C}{C}Q = E(t)$

Answers to Practice Exam Questions

(Full solutions are available on the course web page under the Course Materials link.)

```
1a. y = c_1 e^{-x} \cos(x) + c_2 e^{-x} \sin(x) 1b. c_2 e^{5x} + c_2 x e^{5x} 1c. y = c_1 + c_2 e^{5x} + c_3 x e^{5x} 1d. y = c_1 e^{-2x} + c_2 e^x 1e. y = c_1 e^{3x} \cos(4x) + c_2 e^{3x} \sin(4x) 1f. y = c_1 + c_2 x + c_3 e^{-2x} + c_4 x e^{-2x} 2. y = 8e^{-x} + 4x - 8 + 2e^x 3. y = -6 + 6 \cos(x) - 3 \sin(x) 4. I_{\rm sp} = 16 \cos(4t) 5a. x = -e^{-3t} \cos(t) - 3e^{-3t} \sin(t) 5b. x = \sqrt{10}e^{-3t} \cos\left(t - \left(\pi + \tan^{-1}(3)\right)\right) 5c. underdamped
```

There is no guarantee that the actual exam will bear any resemblance to these sample problems.

Problem 1. Solve the following differential equations.

a.
$$y'' + 2y' + 2y = 0$$

a.
$$y'' + 2y' + 2y = 0$$
.
b. $y'' - 10y' + 25y = 0$

c.
$$y^{(3)} - 10y'' + 25y' = 0$$
. d. $y'' + y' - 2y = 0$

d.
$$y'' + y' - 2y = 0$$

e.
$$y'' - 6y' + 25y = 0$$

e.
$$y'' - 6y' + 25y = 0$$
. f. $y^{(4)} + 4y^{(3)} + 4y'' = 0$.

Problem 2. Solve the following initial value problem:

$$y'' + 2y' + y = 4x + 8e^x$$
, $y(0) = 2$, $y'(0) = -2$.

Problem 3. Solve the following initial value problem:

$$y'' - 2y' = 15\sin(x), \ y(0) = 0, \ y'(0) = -3.$$

Problem 4. Consider an RLC circuit with inductance H=1 henry, resistance $R=2\Omega$, capacitance C=1/16 farad, and applied voltage $E(t)=32\cos(4t)$ volts. Find the steady periodic current $I_{sp}(t)$.

Problem 5. Consider a free (unforced), damped mass-spring system with mass m = 1 kg, damping constant $c = 6 \text{ N} \cdot \text{s/m}$, and spring constant k = 10 N/m. Assume that x(0) = -1 and x'(0) = 0.

- a. Find the position function x(t).
- b. Express your solution from part a in the form $x = Ce^{-pt}\cos(\omega_1 t \alpha)$
- c. Is this system overdamped, underdamped, or critically damped?