Problem 1. (10 points)

Is $y(x)=x^{2}$ is a solution of the d.e. $x y^{\prime}+x^{4}=y^{2}$? Why or why not?
Left side of d.e: $y=x^{2} \Rightarrow y^{\prime}=2 x \Rightarrow x y^{\prime}+x^{4}=x(2 x)+x^{4}=2 x^{2}+x^{4}$. 4 pts .
Right side of d.e: $y=x^{2} \Rightarrow y^{2}=\left(x^{2}\right)^{2}=x^{4}$. 3 pts.
Left side \neq right side, so $y(x)=x^{2}$ is not a solution of the d.e. $x y^{\prime}+x^{4}=y^{2}$ pts.

Problem 2. (15 points)

A can of soda at a temperature of $45^{\circ} \mathrm{F}$ is brought into a room where the temperature is $75^{\circ} \mathrm{F}$. After 10 minutes the temperature of the can of soda is $50^{\circ} \mathrm{F}$. What will the temperature of the soda be after 30 minutes?

Let t denote time in minutes, let T denote the temperature of the can of soda in ${ }^{\circ} \mathrm{F}$, and let A denote room temperature ${ }^{\circ} \mathrm{F}$. As we showed in class, $T=A+\left(T_{0}-A\right) e^{-k t}$ where $T_{0}=T(0)$. Here $T_{0}=45^{\circ} \mathrm{F}$ amd $A=75^{\circ} \mathrm{F}$, so $T=75+(45-75) e^{-k t}=75-30 e^{-k t} .6$ pts.
$T(10)=50 \Rightarrow 50=75-30 e^{-k(10)} \Rightarrow 50-75=-30 e^{-10 k} \Rightarrow \frac{-25}{-30}=e^{-10 k} \Rightarrow$
$\ln (5 / 6)=\ln \left(e^{-10 k}\right)=-10 k \Rightarrow k=-\frac{\ln (5 / 6)}{10} 6 \mathrm{pts}$.
Therefore, $T(30)=75-30 e^{-k(30)}=75-30 e^{30(\ln (5 / 6) / 10)} \Rightarrow T(30)=75-30 e^{3 \ln (5 / 6)} \approx 57.6^{\circ} \mathrm{F}$ pts.

Problem 3. (25 points)

Solve the following initial value problem:

$$
x^{2} \frac{d y}{d x}=2 x y+6, \quad y(1)=3
$$

This is a linear d.e. because y and $d y / d x$ appear just to the first power, multiplied by functions of x alone. 5 pts.
First write the equation in standard form:
$x^{2} \frac{d y}{d x}=2 x y+6 \Rightarrow x^{2} \frac{d y}{d x}-2 x y=6 \Rightarrow \frac{d y}{d x}-\left(\frac{2}{x}\right) y=\frac{6}{x^{2}} 3$ pts.
Next, find the integrating factor: $\rho(x)=e^{\int-2 / x d x}=e^{-2 \ln (x)}=x^{-2} .6$ pts.
Multiply both sides of the standard form of the d.e. by the integrating factor:
$x^{-2}\left[\frac{d y}{d x}-\left(\frac{2}{x}\right) y\right]=x^{-2}\left(\frac{6}{x^{2}}\right) \Rightarrow x^{-2} \frac{d y}{d x}-2 x^{-3} y=6 x^{-4} .2 \mathrm{pts}$.
Use the Product Rule backwards to rewrite the d.e. as $\frac{d}{d x}\left[x^{-2} y\right]=6 x^{-4}$. 4 pts .
Integrating both sides, we obtain $x^{-2} y=\int 6 x^{-4} d x=-2 x^{-3}+c .3$ pts.
$y(1)=3 \Rightarrow 1^{-2}(3)=-2(1)^{-3}+c \Rightarrow c=52$ pts.
Therefore, $x^{-2} y=-2 x^{-3}+5$, so $y=5 x^{2}-2 x^{-1}$.

Problem 4. (25 points)

Solve the following initial value problem.

$$
x^{2} \frac{d y}{d x}=2 x y^{2} \quad \text { with } \quad y(1)=1
$$

This is a separable d.e. 5 pts.

$$
\begin{aligned}
& x^{2} \frac{d y}{d x}=2 x y^{2} \Rightarrow \frac{d y}{y^{2}}=\left(\frac{2 x}{x^{2}}\right) d x \Rightarrow y^{-2} d y=\left(\frac{2}{x}\right) d x .5 \mathrm{pts.} \\
& \Rightarrow \int y^{-2} d y=\int\left(\frac{2}{x}\right) d x \Rightarrow-y^{-1}=2 \ln (x)+c .12 \mathrm{pts.} \\
& y(1)=1 \Rightarrow-1^{-1}=2 \ln (1)+c \Rightarrow c=-1 \text { 3pts. } \\
& \Rightarrow-y^{-1}=2 \ln (x)-1 \Rightarrow y^{-1}=1-2 \ln (x) \Rightarrow y=\frac{1}{1-2 \ln (x)} .
\end{aligned}
$$

Problem 5. (15 points)

A tank initially contains 300 liters of water in which 500 grams of salt are dissolved. A salt solution containing 10 grams of salt per liter is pumped into the tank at the rate of 5 liters per minute, and the well-mixed solution is pumped out of the tank at the rate of 3 liters per minute.

Let t denote time (in minutes), and let x denote the amount of salt in the tank at time t (in grams). Write down the differential equation $\left(\frac{d x}{d t}=\right.$ something $)$ and initial condition describing this mixing problem.

DO NOT SOLVE THE INITIAL VALUE PROBLEM. JUST WRITE DOWN THE D.E. AND INITIAL CONDITION.

$\frac{d x}{d t}=$ rate in - rate out 3 pts.
$=($ flow rate in $)($ concentration in $)-($ flow rate out $)($ concentration out $), 3$ pts. so
$\frac{d x}{d t}=\underbrace{\left(5 \frac{\mathrm{~L}}{\min }\right)}_{1 \mathrm{pt}} \underbrace{\left(10 \frac{\mathrm{gm}}{\mathrm{L}}\right)}_{1 \mathrm{pt}}-\underbrace{\left(3 \frac{\mathrm{~L}}{\min }\right)}_{1 \mathrm{pt} .} \underbrace{\left(\frac{x \mathrm{gm}}{(300+2 t) \mathrm{L}}\right)}_{5 \mathrm{pts}}$.
(The volume in the tank at time t is initial volume $+t$ (flow rate in - flow rate out) $=300+(5-3) t$ liters.)
Initially there are 500 gm . of salt in the tank, so $x(0)=5001 \mathrm{pt}$. .
Therefore, the initial value problem describing this mixing problem is $\frac{d x}{d t}=50-\frac{3 x}{300+2 t}$ with $x(0)=500$.

