Problem 1. (20 points) Consider the autonomous differential equation $\frac{d x}{d t}=x\left(x^{2}-4 x+4\right)$.
a. Find all critical points (equilibrium solutions) of this d.e.
$x\left(x^{2}-4 x+4\right)=0 \Rightarrow x(x-2)^{2}=0 \Rightarrow$ the equilibrium solutions are $x=0$ and $x=2$ 3 pts.
b. Draw the phase line (phase diagram) for this d.e. 8 pts .

The two equilibrium solutions divide the phase line into 3 intervals: $x>2,0<x<2$, and $x<0$.
$\left.\frac{d x}{d t}\right|_{x=3} ^{x<0 .}=3(3-2)^{2}>0$, so the direction arrow points up for $x>2$.
$\left.\frac{d x}{d t}\right|_{x=1}=1(1-2)^{2}>0$, so the direction arrow points up for $0<x<2$.
$\left.\frac{d x}{d t}\right|_{x=-1}=(-1)(-1-2)^{2}<0$, so the direction arrow points down for $x<0$.

c. Determine whether each critical point is stable or unstable.

From the phase line we can see that both 2 and 0 are unstable. 2 pts.
d. If $x(0)=1$, what value will $x(t)$ approach as t increases?

Since 3 lies in the interval $0<x<2$, we can see from the phase line that $x(t) \rightarrow 2$ as t increases. 3 pts .
e. Sketch typical solution curves of the given d.e. Please draw these curves in a graph separate from your phase line. Be sure to include graphs of all equilibrium solutions, and be sure to label the axes. 4 pts.
See the figure above.

Problem 2. (20 points) Solve the following initial value problem.

$$
x^{2}-3 y^{2}+2 x y \frac{d y}{d x}=0, \quad y(1)=2
$$

$x^{2}-3 y^{2}+2 x y \frac{d y}{d x}=0 \Rightarrow \frac{d y}{d x}=\frac{3 y^{2}-x^{2}}{2 x y} . d y / d x$ equals a rational function, and every term has the same degree (2). Therefore, this d.e. is homogeneous. 4 pts.

We introduce the new variable $v=y / x$. In the d.e. we replace $\frac{d y}{d x}$ by $v+x \frac{d v}{d x}$ and we replace y by $x v$:

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{3 y^{2}-x^{2}}{2 x y} \Rightarrow \underbrace{v+x \frac{d v}{d x}=\frac{3(x v)^{2}-x^{2}}{2 x(x v)}}_{\boxed{4 \text { pts. }}}=\frac{x^{2}\left(3 v^{2}-1\right)}{2 x^{2} v}=\frac{3 v^{2}-1}{2 v} \Rightarrow \\
& \underbrace{\underbrace{\Rightarrow \frac{2 v}{v^{2}-1} d v=\frac{1}{x} d x \Rightarrow \int \frac{2 v}{v^{2}-1} d v=\int \frac{1}{x} d x \Rightarrow \underbrace{}_{\sqrt[3 p t s .]{\ln \left(v^{2}-1\right)=\ln (x)+c}}}_{\sqrt{2 \text { pts. }}}=\underbrace{\ln \left((y / x)^{2}-1\right)=\ln (x)+c}_{\sqrt{2 \text { pts. }}}}_{\sqrt[3 \text { pts. }]{x \frac{d v}{d x}}=\frac{3 v^{2}-1}{2 v}-v=\frac{3 v^{2}-1-2 v^{2}}{2 v}=\frac{v^{2}-1}{2 v}}
\end{aligned}
$$

The initial condition $y(1)=2 \Rightarrow \ln \left((2 / 1)^{2}-1\right)=\ln (1)+c \Rightarrow c=\ln (3) 2$ pts. .
Therefore, $\ln \left((y / x)^{2}-1\right)=\ln (x)+\ln (3)$ or $y=x \sqrt{3 x+1}$

Problem 3. (20 points) Solve the following initial value problem.

$$
6 x+y^{2}+(2 x y+2 y) \frac{d y}{d x}=0, \quad y(1)=3
$$

This d.e. is not separable, linear, or homogeneous. Test whether the d.e. is exact:

$$
\underbrace{6 x+y^{2}}_{M}+\underbrace{(2 x y+2 y)}_{N} \frac{d y}{d x}=0
$$

$\frac{\partial M}{\partial y}=\frac{\partial}{\partial y}\left[6 x+y^{2}\right]=2 y .1 \mathrm{pt} . \quad \frac{\partial N}{\partial x}=\frac{\partial}{\partial x}[2 x y+2 y]=2 y .1 \mathrm{pt}$.
Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, the d.e. is exact. 3 pts. Therefore, the solution of the d.e. is $f(x, y)=c$, where
the function f satisfies the conditions $\frac{\partial f}{\partial x}=M=6 x+y^{2}$ and $\frac{\partial f}{\partial y}=N=2 x y+2 y$.

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=6 x+y^{2} \Rightarrow f=\int\left(6 x+y^{2}\right) \partial x=3 x^{2}+y^{2} x+g(y) 6 \text { pts. } \\
& \Rightarrow \frac{\partial f}{\partial y}=\frac{\partial}{\partial y}\left[3 x^{2}+y^{2} x+g(y)\right]=2 y x+g^{\prime}(y) \\
& \text { But } \frac{\partial f}{\partial y}=N=2 x y+2 y \Rightarrow 2 y x+g^{\prime}(y)=2 x y+2 y \Rightarrow g^{\prime}(y)=2 y \Rightarrow g(y)=y^{2} \Rightarrow f=3 x^{2}+y^{2} x+y^{2} \\
& 6 \text { pts. }
\end{aligned}
$$

Therefore, the solution of the d.e. is $3 x^{2}+y^{2} x+y^{2}=c 2 \mathrm{pts}$.
$y(1)=3 \Rightarrow 3(1)^{2}+3^{2}(1)+3^{2}=c \Rightarrow c=21$. 1 pt .

Therefore, the solution of the initial value problem is | $3 x^{2}+y^{2} x+y^{2}=21$ |
| :---: |
| or |
| $y=\sqrt{\frac{21-3 x^{2}}{x+1}}$ |

Problem 4. (20 points) Let P denote the population of a colony of tribbles. Suppose that the birth rate β (number of births per week per tribble) is proportional to P^{2} and that the death rate δ (number of deaths per week per tribble) equals 0 . Suppose the initial population is 2, and after one week the population is 4 . When will the population equal 8 ?
$\frac{d P}{d t}=\beta P-\delta P=\left(k P^{2}\right) P-(0) P=k P^{3} .6 \mathrm{pts}$.
This is a separable d.e: $\frac{d P}{d t}=k P^{3} \Rightarrow \frac{d P}{P^{3}}=k d t \Rightarrow \int P^{-3} d P=\int k d t \Rightarrow \frac{P^{-2}}{-2}=k t+c .8 \mathrm{pts}$.
$P(0)=2 \Rightarrow \frac{2^{-2}}{-2}=k(0)+c \Rightarrow c=-1 / 8 \Rightarrow \frac{P^{-2}}{-2}=k t-1 / 82 \mathrm{pt}$.
$P(1)=4 \Rightarrow \frac{4^{-2}}{-2}=k(1)-1 / 8 \Rightarrow k=1 / 8-1 / 32=3 / 32 \Rightarrow \frac{P^{-2}}{-2}=3 t / 32-1 / 8.2 \mathrm{pt}$.
Therefore, $P(t)=8 \Rightarrow \frac{8^{-2}}{-2}=3 t / 32-1 / 8=3 t / 32=1 / 8-1 / 128=15 / 128 \Rightarrow t=5 / 4$ weeks. 2 pt .
Problem 5. (10 points) A car experiences two forces: a constant thrust force T and a drag force proportional to its velocity. Let t denote time, let v denote the car's velocity at time t, and let m denote the car's mass.

Write a differential equation ($d v / d t=$ something) modeling the car's motion.
DO NOT SOLVE THE DIFFERENTIAL EQUATION, JUST WRITE IT DOWN.
Newton's Second Law says that $F=m a$, where F is the total force acting on an object and a is the object's acceleration. 3 pts.
The total force acting on the ball is $F=\underbrace{T}_{\text {thrust }}+\underbrace{-k v}_{\text {drag }}$
Therefore, $F=m a \Rightarrow T-k v=m \frac{d v}{d t} \Rightarrow \frac{d v}{d t}=\frac{T}{m}-\left(\frac{k}{m}\right) v$

