Problem 1. (20 pts.) Solve the following differential equations.
a. (10 pts.) $y^{\prime \prime}+6 y^{\prime}+9 y=0$

Characteristic equation: $r^{2}+6 r+9=0 \Rightarrow(r+3)^{2}=0 \Rightarrow r=-3$ (double root) 5 pts.
Therefore, $y=c_{1} e^{-3 x}+c_{2} x e^{-3 x}$
b. (10 pts.) $y^{\prime \prime}-4 y=0$.

Characteristic equation: $r^{2}-4=0 \Rightarrow(r+2)(r-2)=0 \Rightarrow r=-2$ or $r=25$ pts.
Therefore, $y=c_{1} e^{-2 x}+c_{2} e^{2 x}$ 5 pts.

Problem 2. (20 points) Solve the following differential equations:
a. (10 pts.) $y^{(3)}+2 y^{\prime \prime}+5 y^{\prime}=0$

Characteristic equation: $r^{3}+2 r^{2}+5 r=0 \Rightarrow r\left(r^{2}+2 r+5\right)=0 \Rightarrow$
$r=0$ or $r=\frac{-2 \pm \sqrt{2^{2}-4(1)(5)}}{2(1)}=\frac{-2 \pm \sqrt{-16}}{2}=\frac{-2 \pm 4 i}{2}=-1 \pm 2 i$. 5 pts.
Therefore, $y=c_{1} e^{0 x}+c_{2} e^{-1 x} \cos (2 x)+c_{3} e^{-1 x} \sin (2 x)$, or
$y=c_{1}+c_{2} e^{-x} \cos (2 x)+c_{3} e^{-x} \sin (2 x) \quad 5 \mathrm{pts}$.
b. (10 pts.) $y^{(4)}-y^{(3)}-6 y^{\prime \prime}=0$.

Characteristic equation: $r^{4}-r^{3}-6 r^{2}=0 \Rightarrow r^{2}\left(r^{2}-r-6\right)=0 \Rightarrow r^{2}(r+2)(r-3)=0$
$\Rightarrow r=0$ (double root) or $r=-2$ or $r=3$. 5 pts.
Therefore, $y=c_{1} e^{0 x}+c_{2} x e^{0 x}+c_{3} e^{-2 x}+c_{4} e^{3 x}$, or $y=c_{1}+c_{2} x+c_{3} e^{-2 x}+c_{4} e^{3 x}$ pts.
Problem 3. (25 pts .) Solve the following initial value problem:

$$
y^{\prime \prime}+4 y=8 x^{2}, y(0)=1, y^{\prime}(0)=0
$$

Step 1. Find y_{c} by solving the homogeneous d.e. $y^{\prime \prime}+4 y=0$.
Characteristic equation: $r^{2}+4=0 \Rightarrow r^{2}=-4 \Rightarrow r= \pm \sqrt{-4}=0 \pm 2 i$.
Therefore, $y_{c}=c_{1} e^{0 x} \cos (2 x)+c_{2} e^{0 x} \sin (2 x)=c_{1} \cos (2 x)+c_{2} \sin (2 x) .5 \mathrm{pts}$.
Step 2. Find y_{p}.
Method 1: Undetermined Coefficients. Since the nonhomogeneous term $8 x^{2}$ in the given d.e. is a polynomial of degree 2 , we should guess that y_{p} is a polynomial of degree 2 :
$y_{p}=A x^{2}+B x+C .4$ pts. No term in this guess duplicates a term in y_{c}, so there is no need to modify this guess. 2 pts.
$y=A x^{2}+B x+C \Rightarrow y^{\prime}=2 A x+B \Rightarrow y^{\prime \prime}=2 A$. Therefore, the left side of the d.e. is
$y^{\prime \prime}+4 y=2 A+4\left[A x^{2}+B x+C\right]=4 A x^{2}+4 B x+(2 A+4 C)$. We want this to equal the nonhomogeneous term $8 x^{2}$:
$4 A x^{2}+4 B x+(2 A+4 C)=8 x^{2} \Rightarrow 4 A=8,4 B=0,2 A+4 C=0 \Rightarrow A=2, B=0, C=-1$. Thus, $y_{p}=2 x^{2}-1$. 9 pts.
Method 2: Variation of Parameters. From y_{c} we obtain two independent solutions of the homogeneous d.e: $y_{1}=\cos (2 x)$ and $y_{2}=\sin (2 x)$. 1 pt . The Wronskian is given by
$W(x)=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|=\left|\begin{array}{cc}\cos (2 x) & \sin (2 x) \\ -2 \sin (2 x) & 2 \cos (2 x)\end{array}\right|=\cos (2 x)(2 \cos (2 x))-(-2 \sin (2 x)) \sin (2 x)=$
$2\left[\cos ^{2}(2 x)+\sin ^{2}(2 x)\right]=2.1 \mathrm{pt}$.
$u_{1}=\int \frac{-y_{2} f(x)}{W(x)} d x=-\int \frac{\sin (2 x)\left(8 x^{2}\right)}{2} d x=-4 \int\left[x^{2} \sin (2 x)\right] d x=$
$\left(2 x^{2}-1\right) \cos (2 x)-2 x \sin (2 x)$ after 2 integrations by parts or after using formulas 38 and 40 from the table of integrals. 4 pts .
$u_{2}=\int \frac{y_{1} f(x)}{W(x)} d x=\int \frac{\cos (2 x)\left(8 x^{2}\right)}{2} d x=4 \int\left[x^{2} \cos (2 x)\right] d x=\left(2 x^{2}-1\right) \sin (2 x)+2 x \sin (2 x)$ after 2 integrations by parts or after using formulas 39 and 41 from the table of integrals. 4 pts.
Therefore, $y_{p}=u_{1} y_{1}+u_{2} y_{2}=$
$\left[\left(2 x^{2}-1\right) \cos (2 x)-2 x \sin (2 x)\right] \cos (2 x)+\left[\left(2 x^{2}-1\right) \sin (2 x)+2 x \sin (2 x)\right] \sin (2 x)=$
$\left(2 x^{2}-1\right) \cos ^{2}(2 x)-2 x \sin (2 x) \cos (2 x)+\left(2 x^{2}-1\right) \sin ^{2}(2 x)+2 x \sin (2 x) \cos (2 x)=$
$\left(2 x^{2}-1\right)\left[\cos ^{2}(2 x)+\sin ^{2}(2 x)\right]=2 x^{2}-15$ pts.
Step 3. $y=y_{c}+y_{p}$, so $y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+2 x^{2}-1$. 3 pts.
Step 4. Use the initial conditions to determine the values of the arbitrary constants in the general solution.
$y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+2 x^{2}-1 \Rightarrow y^{\prime}=-2 c_{1} \sin (2 x)+2 c_{2} \cos (2 x)+4 x$.
$y(0)=1 \Rightarrow 1=c_{1} \cos (0)+c_{2} \sin (0)+2(0)^{2}-1=c_{1}-1 \Rightarrow c_{1}=2$
$y^{\prime}(0)=0 \Rightarrow 0=-2 c_{1} \sin (0)+2 c_{2} \cos (0)+4(0)=2 c_{2} \Rightarrow c_{2}=0$
2 pts.
Therefore, $y=2 \cos (2 x)+2 x^{2}-1$

Problem 4. (20 points) Consider a forced, damped mass-spring system with mass $m=1 \mathrm{~kg}$, damping constant $c=10 \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}$, spring constant $k=9 \mathrm{~N} / \mathrm{m}$, and external force $F_{\text {ext }}=60 \cos (3 t) \mathrm{N}$. Find the steady-state (steady periodic) solution $x_{\text {sp }}$.

The d.e. describing a mass-spring system is $m x^{\prime \prime}+c x^{\prime}+k x=F_{\mathrm{e}}(t) .2 \mathrm{pts}$.
In this problem, the d.e. becomes $x^{\prime \prime}+10 x^{\prime}+9 x=60 \cos (3 t) .2$ pts.
The steady periodic solution is the particular solution $x_{p} .4$ pts.
Using the Method of Undetermined Coefficients: Since the nonhomogeneous term $60 \cos (3 t)$ is a cosine, we should guess that x_{p} is a combination of a cosine and a sine with the same frequency: $x_{p}=A \cos (3 t)+B \sin (3 t)$. 5 pts. (No part of this guess will duplicate part of x_{c} because x_{c} is a transient term containing decaying exponential functions.)
$x=A \cos (3 t)+B \sin (3 t) \Rightarrow x^{\prime}=-3 A \sin (3 t)+3 B \cos (3 t) \Rightarrow x^{\prime \prime}=-9 A \cos (3 t)-9 B \sin (3 t)$. Therefore, the left side of the d.e. is
$\left.x^{\prime \prime}+10 x^{\prime}+9 x=-9 A \cos (3 t)-9 B \sin (3 t)+10[-3 A \sin (3 t)+3 B \cos (3 t))\right]+9[A \cos (3 t)+B \sin (3 t)]$ $=30 B \cos (2 t)-30 A \sin (2 t)$.
We want this to equal the nonhomogeneous term $60 \cos (3 t)$:
$30 B \cos (2 t)-30 A \sin (2 t)=60 \cos (3 t) \Rightarrow 30 B=60,-30 A=0 \Rightarrow A=0$ and $B=2$. Therefore, $x_{\mathrm{sp}}=2 \sin (3 t)$.

Using the Method of Variation of Parameters: We first find the complementary solution by solving the homogeneous d.e. $x^{\prime \prime}+10 x^{\prime}+9 x=0$.
Characteristic equation: $r^{2}+10 r+9=0 \Rightarrow(r+9)(r+1)=0 \Rightarrow r=-9$ or $r=-1$. Therefore, $x_{c}=c_{1} e^{-9 t}+c_{2} e^{-t}$ From x_{c} we obtain two independent solutions of the homogeneous d.e: $x_{1}=e^{-9 t}$ and $x_{2}=e^{-t}$. 1 pt . The Wronskian is given by
$W(t)=\left|\begin{array}{ll}x_{1} & x_{2} \\ x_{1}^{\prime} & x_{2}^{\prime}\end{array}\right|=\left|\begin{array}{cc}e^{-9 t} & e^{-t} \\ -9 e^{-9 t} & -e^{-t}\end{array}\right|=e^{-9 t}\left(-e^{-t}\right)-\left(-9 e^{-9 t}\right) e^{-t}=$
$8 e^{-10 t} .1 \mathrm{pt}$.
$u_{1}=\int \frac{-x_{2} f(t)}{W(t)} d x=-\int \frac{e^{-t}(60 \cos (3 t))}{8 e^{-10 t}} d x=-\frac{15}{2} \int\left[e^{9 t} \cos (3 t)\right] d x=$
$-\frac{15}{2}\left(\frac{e^{9 t}}{9^{2}+3^{2}}\right)[9 \cos (3 t)+3 \sin (3 t)]=-\frac{1}{4} e^{9 t}[3 \cos (3 t)+\sin (3 t)]$ using formula 50 from the table of integrals. 4 pts .
$u_{2}=\int \frac{x_{1} f(t)}{W(t)} d x=\frac{15}{2} \int\left[e^{t} \cos (3 t)\right] d x=$
$\frac{15}{2}\left(\frac{e^{t}}{1^{2}+3^{2}}\right)[\cos (3 t)+3 \sin (3 t)]=\frac{3}{4} e^{t}[\cos (3 t)+3 \sin (3 t)]$ again using formula 50 from the table of integrals. 4 pts.
Therefore, $x_{p}=u_{1} x_{1}+u_{2} x_{2}=$
$\left\{-\frac{1}{4} e^{9 t}[3 \cos (3 t)+\sin (3 t)]\right\} e^{-9 t}+\left\{\frac{3}{4} e^{t}[\cos (3 t)+3 \sin (3 t)]\right\} e^{-t}=$
$-\frac{3}{4} \cos (3 t)-\frac{1}{4} \sin (3 t)+\frac{3}{4} \cos (3 t)+\frac{9}{4} \sin (3 t)=2 \sin (3 t)$ Therefore, $x_{\mathrm{sp}}=2 \sin (3 t)$. 2 pts.

