Problem 1. (20 pts.) Solve the following differential equations.

a. (10 pts.) y'' + 6y' + 9y = 0

Characteristic equation: $r^2 + 6r + 9 = 0 \Rightarrow (r+3)^2 = 0 \Rightarrow r = -3$ (double root) 5 pts.

Therefore, $y = c_1 e^{-3x} + c_2 x e^{-3x}$ 5 pts.

b. (10 pts.) y'' - 4y = 0.

Characteristic equation: $r^2 - 4 = 0 \Rightarrow (r+2)(r-2) = 0 \Rightarrow r = -2 \text{ or } r = 2$ [5 pts.]

Therefore, $y = c_1 e^{-2x} + c_2 e^{2x}$ [5 pts.]

Problem 2. (20 points) Solve the following differential equations:

a. (10 pts.) $y^{(3)} + 2y'' + 5y' = 0$

Characteristic equation: $r^3 + 2r^2 + 5r = 0 \Rightarrow r\left(r^2 + 2r + 5\right) = 0 \Rightarrow$ $r = 0 \text{ or } r = \frac{-2 \pm \sqrt{2^2 - 4(1)(5)}}{2(1)} = \frac{-2 \pm \sqrt{-16}}{2} = \frac{-2 \pm 4i}{2} = -1 \pm 2i. \text{ [5 pts.]}$ Therefore, $y = c_1 e^{0x} + c_2 e^{-1x} \cos(2x) + c_3 e^{-1x} \sin(2x)$, or $y = c_1 + c_2 e^{-x} \cos(2x) + c_3 e^{-x} \sin(2x)$ 5 pts.

b. $(10 \text{ pts.}) y^{(4)} - y^{(3)} - 6y'' = 0.$

Characteristic equation: $r^4 - r^3 - 6r^2 = 0 \Rightarrow r^2(r^2 - r - 6) = 0 \Rightarrow r^2(r + 2)(r - 3) = 0$ $\Rightarrow r = 0$ (double root) or r = -2 or r = 3. 5 pts.

Therefore, $y = c_1 e^{0x} + c_2 x e^{0x} + c_3 e^{-2x} + c_4 e^{3x}$, or $y = c_1 + c_2 x + c_3 e^{-2x} + c_4 e^{3x}$ 5 pts.

Problem 3. (25 pts.) Solve the following initial value problem:

$$y'' + 4y = 8x^2$$
, $y(0) = 1$, $y'(0) = 0$.

Step 1. Find y_c by solving the homogeneous d.e. y'' + 4y = 0. Characteristic equation: $r^2 + 4 = 0 \Rightarrow r^2 = -4 \Rightarrow r = \pm \sqrt{-4} = 0 \pm 2i$. Therefore, $y_c = c_1 e^{0x} \cos(2x) + c_2 e^{0x} \sin(2x) = c_1 \cos(2x) + c_2 \sin(2x)$. 5 pts.

Step 2. Find y_p .

Method 1: Undetermined Coefficients. Since the nonhomogeneous term $8x^2$ in the given d.e. is a polynomial of degree 2, we should guess that y_p is a polynomial of degree 2:

 $y_p = Ax^2 + Bx + C$. 4 pts. No term in this guess duplicates a term in y_c , so there is no need to modify this guess. 2 pts.

 $y = Ax^2 + Bx + C \Rightarrow y' = 2Ax + B \Rightarrow y'' = 2A$. Therefore, the left side of the d.e. is $y'' + 4y = 2A + 4[Ax^2 + Bx + C] = 4Ax^2 + 4Bx + (2A + 4C)$. We want this to equal the nonhomogeneous term $8x^2$:

$$4Ax^2 + 4Bx + (2A + 4C) = 8x^2 \Rightarrow 4A = 8, \ 4B = 0, \ 2A + 4C = 0 \Rightarrow A = 2, \ B = 0, \ C = -1.$$
 Thus, $y_p = 2x^2 - 1$. 9 pts.

Method 2: Variation of Parameters. From y_c we obtain two independent solutions of the homogeneous d.e: $y_1 = \cos(2x)$ and $y_2 = \sin(2x)$. The Wronskian is given by

$$W(x) = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = \begin{vmatrix} \cos(2x) & \sin(2x) \\ -2\sin(2x) & 2\cos(2x) \end{vmatrix} = \cos(2x) (2\cos(2x)) - (-2\sin(2x))\sin(2x) = \cos(2x) (2\cos(2x)) - (-2\sin(2x))\sin(2x) = \cos(2x) \cos(2x) = \cos(2x) \cos(2x$$

$$2\left[\cos^2(2x) + \sin^2(2x)\right] = 2.$$
 1 pt.

$$u_1 = \int \frac{-y_2 f(x)}{W(x)} dx = -\int \frac{\sin(2x) (8x^2)}{2} dx = -4 \int [x^2 \sin(2x)] dx =$$

 $(2x^2-1)\cos(2x)-2x\sin(2x)$ after 2 integrations by parts or after using formulas 38 and 40 from the table of integrals. 4 pts.

$$u_2 = \int \frac{y_1 f(x)}{W(x)} dx = \int \frac{\cos(2x) (8x^2)}{2} dx = 4 \int \left[x^2 \cos(2x) \right] dx = \left(2x^2 - 1 \right) \sin(2x) + 2x \sin(2x)$$
 af-

ter 2 integrations by parts or after using formulas 39 and 41 from the table of integrals. 4 pts. Therefore, $y_p = u_1y_1 + u_2y_2 =$

$$\left[\left(2x^2 - 1 \right) \cos(2x) - 2x \sin(2x) \right] \cos(2x) + \left[\left(2x^2 - 1 \right) \sin(2x) + 2x \sin(2x) \right] \sin(2x) =
\left(2x^2 - 1 \right) \cos^2(2x) - 2x \sin(2x) \cos(2x) + \left(2x^2 - 1 \right) \sin^2(2x) + 2x \sin(2x) \cos(2x) =
\left(2x^2 - 1 \right) \left[\cos^2(2x) + \sin^2(2x) \right] = 2x^2 - 1 \left[5 \text{ pts.} \right]$$

Step 3.
$$y = y_c + y_p$$
, so $y = c_1 \cos(2x) + c_2 \sin(2x) + 2x^2 - 1$. 3 pts.

Step 4. Use the initial conditions to determine the values of the arbitrary constants in the general solution.

$$y = c_1 \cos(2x) + c_2 \sin(2x) + 2x^2 - 1 \Rightarrow y' = -2c_1 \sin(2x) + 2c_2 \cos(2x) + 4x.$$

$$y(0) = 1 \Rightarrow 1 = c_1 \cos(0) + c_2 \sin(0) + 2(0)^2 - 1 = c_1 - 1 \Rightarrow c_1 = 2$$

$$y'(0) = 0 \Rightarrow 0 = -2c_1 \sin(0) + 2c_2 \cos(0) + 4(0) = 2c_2 \Rightarrow c_2 = 0$$

Therefore,
$$y = 2\cos(2x) + 2x^2 - 1$$

Problem 4. (20 points) Consider a forced, damped mass-spring system with mass m=1 kg, damping constant c=10 N·s/m, spring constant k=9 N/m, and external force $F_{\rm ext}=60\cos(3t)$ N. Find the steady-state (steady periodic) solution $x_{\rm sp}$.

The d.e. describing a mass-spring system is $mx'' + cx' + kx = F_e(t)$. 2 pts. In this problem, the d.e. becomes $x'' + 10x' + 9x = 60\cos(3t)$. 2 pts.

The steady periodic solution is the particular solution x_p . 4 pts.

Using the Method of Undetermined Coefficients: Since the nonhomogeneous term $60\cos(3t)$ is a cosine, we should guess that x_p is a combination of a cosine and a sine with the same frequency: $x_p = A\cos(3t) + B\sin(3t)$. 5 pts. (No part of this guess will duplicate part of x_c because x_c is a transient term containing decaying exponential functions.)

 $x = A\cos(3t) + B\sin(3t) \Rightarrow x' = -3A\sin(3t) + 3B\cos(3t) \Rightarrow x'' = -9A\cos(3t) - 9B\sin(3t)$. Therefore, the left side of the d.e. is

 $x'' + 10x' + 9x = -9A\cos(3t) - 9B\sin(3t) + 10\left[-3A\sin(3t) + 3B\cos(3t)\right] + 9\left[A\cos(3t) + B\sin(3t)\right] = 30B\cos(2t) - 30A\sin(2t).$

We want this to equal the nonhomogeneous term $60\cos(3t)$:

 $30B\cos(2t) - 30A\sin(2t) = 60\cos(3t) \Rightarrow 30B = 60, -30A = 0 \Rightarrow A = 0$ and B = 2. Therefore,

$$x_{\rm sp} = 2\sin(3t)$$
. 7 pts.

Using the Method of Variation of Parameters: We first find the complementary solution by solving the homogeneous d.e. x'' + 10x' + 9x = 0.

Characteristic equation: $r^2 + 10r + 9 = 0 \Rightarrow (r+9)(r+1) = 0 \Rightarrow r = -9 \text{ or } r = -1$. Therefore, $x_c = c_1 e^{-9t} + c_2 e^{-t}$ From x_c we obtain two independent solutions of the homogeneous d.e. $x_1 = e^{-9t}$ and $x_2 = e^{-t}$. 1 pt. The Wronskian is given by

$$W(t) = \begin{vmatrix} x_1 & x_2 \\ x_1' & x_2' \end{vmatrix} = \begin{vmatrix} e^{-9t} & e^{-t} \\ -9e^{-9t} & -e^{-t} \end{vmatrix} = e^{-9t} \left(-e^{-t} \right) - \left(-9e^{-9t} \right) e^{-t} = 8e^{-10t}.$$

$$1 \text{ pt.}$$

$$u_1 = \int \frac{-x_2 f(t)}{W(t)} dx = -\int \frac{e^{-t} (60 \cos(3t))}{8e^{-10t}} dx = -\frac{15}{2} \int \left[e^{9t} \cos(3t) \right] dx =$$

$$-\frac{15}{2} \left(\frac{e^{9t}}{9^2 + 3^2} \right) \left[9\cos(3t) + 3\sin(3t) \right] = -\frac{1}{4} e^{9t} \left[3\cos(3t) + \sin(3t) \right]$$
 using formula 50 from the table

$$u_2 = \int \frac{x_1 f(t)}{W(t)} dx = \frac{15}{2} \int \left[e^t \cos(3t) \right] dx =$$

$$\frac{15}{2} \left(\frac{e^t}{1^2 + 3^2} \right) \left[\cos(3t) + 3\sin(3t) \right] = \frac{3}{4} e^t \left[\cos(3t) + 3\sin(3t) \right]$$
 again using formula 50 from the table

Therefore,
$$x_p = u_1 x_1 + u_2 x_2 =$$

$$\left\{ -\frac{1}{4}e^{9t} \left[3\cos(3t) + \sin(3t) \right] \right\} e^{-9t} + \left\{ \frac{3}{4}e^{t} \left[\cos(3t) + 3\sin(3t) \right] \right\} e^{-t} =$$

of integrals.
$$\boxed{4 \text{ pts.}}$$
Therefore, $x_p = u_1 x_1 + u_2 x_2 = \left\{-\frac{1}{4}e^{9t}\left[3\cos(3t) + \sin(3t)\right]\right\}e^{-9t} + \left\{\frac{3}{4}e^t\left[\cos(3t) + 3\sin(3t)\right]\right\}e^{-t} = -\frac{3}{4}\cos(3t) - \frac{1}{4}\sin(3t) + \frac{3}{4}\cos(3t) + \frac{9}{4}\sin(3t) = 2\sin(3t) \text{ Therefore, } \boxed{x_{\rm sp} = 2\sin(3t)}. \boxed{2 \text{ pts.}}$