MATH. 2360 Engineering Differential Equations
 Take-Home Part of Exam \# 3
 Spring 2019

Due date: Friday, April 19.

Problem \#1 (15 points)

The purpose of this assignment is to illustrate one important difference between linear and nonlinear models of oscillating systems. In an undamped, unforced linear system, the period of a periodic solution depends only on system parameters and not on the initial conditions, but in a nonlinear system the period can depend on the initial conditions.

Consider the following nonlinear differential equation, which models the free, undamped motion of a block attached to a "soft" spring. (A soft spring is a spring which requires less force to stretch than a spring that obeys Hooke's Law.)

$$
\begin{equation*}
x^{\prime \prime}+x-0.1 x^{3}=0 . \tag{1}
\end{equation*}
$$

a. Transform the second-order d.e. above into an equivalent system of first-order d.e.'s. Note: x^{3} means x raised to the third power, not the third derivative of x.
b. Use MATLAB's ode45 solver to generate a numerical solution of this system over the interval $0 \leq t \leq 10 \pi$ for the following two sets of initial conditions.
i. $x(0)=1, x^{\prime}(0)=0$
ii. $x(0)=2, x^{\prime}(0)=0$
c. Graph the two solutions on the same set of axes. Graph only x vs. t for each IVP; do not graph x^{\prime}. Do not use the plotyy command. Be sure to label the axes. Include a title that contains your name and describes the graph, something like Numerical Solutions of $x^{\prime \prime}+x-0.1 x^{3}=0$ by I. M. Smart.
Note: To get $x^{\prime \prime}$ to appear in your title you will have to type $x^{\prime \prime \prime \prime}$ in your MATLAB title command.
d. Based on your graph, which solution appears to have the longer period?

Please turn in your answers to parts a and d, your graph from part c (which should only contain 2 curves, not 4), and your MATLAB code including the m file defining the system of differential equations. I don't want to see all the calculated values. Please email your results to me at stephen_pennell@uml.edu

