The method of undetermined coefficients can be used to find a particular solution y_{p} of a nonhomogeneous linear d.e. if the d.e. has constant coefficients and the nonhomogeneous term is a polynomial, an exponential, a sine or a cosine, or a sum or product of these.

If the d.e. has variable coefficients and/or the nonhomogeneous term is something other than a polynomial, exponential, sine, cosine, or sum or product of these, you must use another method (e.g. variation of parameters).

1. If the nonhomogeneous term is a polynomial, try guessing a polynomial of the same degree for y_{p}.
Example. $y^{\prime \prime}-3 y^{\prime}+2 y=4 x$
Nonhomogeneous term: $4 x$ (polynomial of degree 1).
Guess: $y_{p}=A x+B$ (a polynomial of degree 1).
Note: You need the constant term B in your guess for y_{p} even though there is no constant in the nonhomogeneous term.
2. If the nonhomogeneous term is an exponential function, try guessing an exponential function of the same form for y_{p}.
Example. $y^{\prime \prime}-3 y^{\prime}+2 y=6 e^{-x}$
Nonhomogeneous term: $6 e^{-x}$ (an exponential function).
Guess: $y_{p}=A e^{-x}$ (an exponential function of the same form).
3. If the nonhomogeneous term is a sine or a cosine, try guessing a combination of sine and cosine of the same angular frequency for y_{p}.
Example. $y^{\prime \prime}-3 y^{\prime}+2 y=10 \sin (2 x)$
Nonhomogeneous term: $10 \sin (2 x)$ (sine function with angular frequency 2).
Guess: $y_{p}=A \sin (2 x)+B \cos (2 x)$ (combination of sine and cosine w. angular frequency 2).
Note: You need the cosine term $B \cos (2 x)$ in your guess for y_{p} even though there is no cosine in the nonhomogeneous term.
4. If the nonhomogeneous term is a sum of a polynomial, an exponential function, and/or a sine or cosine, try guessing a sum of these functions for y_{p}.
Example. $y^{\prime \prime}-3 y^{\prime}+2 y=4 x+10 \sin (2 x)$
Nonhomogeneous term: $4 x+10 \sin (2 x)$ (sum of a polynomial of degree 1 and a sine with angular frequency 2.)
Guess: $y_{p}=A x+B+C \sin (2 x)+D \cos (2 x)$
5. If the nonhomogeneous term is a product of a polynomial, an exponential function, and/or a sine or cosine, try guessing a product of these functions for y_{p}.
Example. $y^{\prime \prime}-3 y^{\prime}+2 y=36 x e^{-x}$
Nonhomogeneous term: $36 x e^{-x}$ (product of a polynomial of degree 1 and an exponential.)
Guess: $y_{p}=(A x+B) e^{-x}$
Note: You need the $B e^{-x}$ term in your guess for y_{p} even though there is no such term in the nonhomogeneous term.

IMPORTANT EXCEPTION TO THE ABOVE RULES

If any part of your guess for y_{p} is a part of the complementary solution y_{c}, you must multiply that part of your y_{p} guess by x.
Example 1. $y^{\prime \prime}-3 y^{\prime}+2 y=e^{x}$
The homogeneous equation is $y^{\prime \prime}-3 y^{\prime}+2 y=0$, which has characteristic equation $r^{2}-3 r+2=0$.
The roots of the characteristic equation are 1 and 2 , so the complementary solution is $y_{c}=c_{1} e^{x}+c_{2} e^{2 x}$.

Nonhomogeneous term: e^{x}
Usual guess: $y_{p}=A e^{x}$. A term of this form already appears in y_{c}, so we must multiply our guess by x.

Correct guess: $y_{p}=A x e^{x}$.

Example 2. $y^{\prime \prime}-2 y^{\prime}+y=e^{x}$
The homogeneous equation is $y^{\prime \prime}-2 y^{\prime}+y=0$, which has characteristic equation $r^{2}-2 r+1=0$.
The root of the characteristic equation is 1 (with multiplicity 2), so the complementary solution is $y_{c}=c_{1} e^{x}+c_{2} x e^{x}$.

Nonhomogeneous term: e^{x}.
Usual guess: $y_{p}=A e^{x}$. A term of this form already appears in y_{c}, so we multiply our guess by x : $y_{p}=A x e^{x}$. This new guess is still of the same form as part of y_{c}, so we must multiply by x again.

Correct guess: $y_{p}=A x^{2} e^{x}$.

