92.272 Introduction to Programming with MATLAB Curve Fitting Part II and Spline Interpolation

A. Curve Fitting

As we have seen, the polyfit command fits a polynomial function to a set of data points. However, sometimes it is appropriate to use a function other than a polynomial.

The following types of functions are often used to model a data set.

- $y = bx^m$ (power function)
- $y = be^{mx}$ (exponential function)
- $y = m \ln(x) + b$ (logarithmic function)
- $y = \frac{1}{mx + b}$ (reciprocal function)

Note that $y = bx^m \Rightarrow \ln(y) = \ln(b) + m \ln(x)$, so a loglog plot of a set of data points obeying a power law is a straight line.

 $y = be^{mx} \Rightarrow \ln(y) = \ln(b) + mx$, so a semilog plot (linear horizontal axis, logarithmic vertical axis) of a set of data points obeying an exponential law is a straight line.

A semilog plot (logarithmic horizontal axis, linear vertical axis) of a set of data points obeying a logarithmic law is a straight line.

 $y = \frac{1}{mx+b} \Rightarrow \frac{1}{y} = mx+b$, so a linear plot of 1/y vs. x is a straight line if the data obey a reciprocal law.

Once you have chosen the type of function you want to use to model your data, you can use the polyfit command to calculate the values of b and m. If you have a theoretical basis for choosing a particular type of function to model your data, use that type of function. If you have no idea what type of function to use, you can look at a loglog plot, two semilog plots, and a linear plot of 1/y vs. x to see if any of the graphs are close to a straight line. If one of the four graphs looks like a line, use the corresponding function to model your data.

Here is an example. I obtained the data by measuring the temperature of water in a hot pot every three minutes.

```
x = [0 3 6 9 12 15 18 21 24 27 30 33];
y = [50.6 46.8 43.2 40.0 37.0 34.2 31.6 29.2 27.0 25.0 23.1 21.4];
subplot(2,2,1)
loglog(x,y)
subplot(2,2,2)
semilogy(x,y)
subplot(2,2,3)
semilogx(x,y)
subplot(2,2,4)
plot(x,1./y)
```

If the first graph looks like a line, you can use the command polyfit(log(x), log(y), 1) to calculate the values of m and ln(b).

If the second graph looks like a line, you can use the command polyfit(x, log(y), 1) to calculate the values of m and ln(b).

If the third graph looks like a line, you can use the command polyfit(log(x), y, 1) to calculate the values of m and b.

If the fourth graph looks like a line, you can use the command polyfit(x, 1./y, 1) to calculate the values of m and b.

B. Spline Interpolation

If you have no reason to choose a functional model to fit a set of data but you want to use the data to make predictions, you might want to use a curve that passes through all the data points. As we have seen, you can always find a polynomial of degree n-1 that passes through a set of n data points, but this might not be a good idea because high-degree polynomials can oscillate quite a bit. An alternative is to use a piecewise polynomial, also known as a *spline*. A popular choice is a piecewise cubic function. The degree is high enough to provide a fair degree of smoothness but not so high as to cause large oscillations.

The MATLAB command spline produces a cubic spline, given a set of data points as input. The command ppval can be used to evaluate splines produced by the spline command. Here is an example.

```
x_data = [-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1];
y_data = [0.3333 0.4324 0.5714 0.7619 1.0000 1.2308 1.3333 1.2308 1.0000];
pp = spline(x_data, y_data);
x_plot=linspace(-1, 1, 50);
y_plot = ppval(pp, x_plot);
plot(x_data, y_data, 'o', x_plot, y_plot, '-b')
```

If you wanted to estimate a y value at an x value not among the given data, you can use the ppval command. For example, to estimate the y value corresponding to x = 0.1 you can use the command ppval(pp, 0.1)

C. Alternate Interpolation Methods

The MATLAB command intper1 offers several interpolation options. Try these commands.

```
x = linspace(0, 2*pi, 11);
y = sin(x);
x_plot = linspace(0, 2*pi, 51);
y_plot = interp1(x, y, x_plot, 'linear');
plot(x, y, 'o', x_plot, y_plot, '-b')
```

The interp1 command with the 'linear' option produces a piecewise linear function that passes through the data points given by the x and y arrays.

If you use 'spline' instead of 'linear' you will generate a piecewise cubic interpolant, just like the spline command generates. Try these commands:

```
x = linspace(0, 2*pi, 10);
y = sin(x);
x_plot = linspace(0, 2*pi, 25);
y_plot = interp1(x, y, x_plot, 'spline');
plot(x, y, 'o', x_plot, y_plot, '-b')
```

Practice Problems (from Gilat, MATLAB: An Introduction with Applications.)

- 1. Below are data showing how the stress concentration factor k in a stepped shaft depends on the ratio of two shaft dimensions.
 - (a) Use a power function $k = b(r/d)^m$ to model the relationship between k and r/d. Determine the values of b and m that best fit the data.
 - (b) Plot the data points and the curve-fitted model.
 - (c) Use the model to predict the stress concentration factor for r/d = 0.04.

,	0.3							
\overline{k}	1.18	1.19	1.21	1.26	1.32	1.43	1.6	1.98

2. The population of the world for selected years from 1750 to 2009 is given in the following table.

Year	1750	1800	1850	1900	1950	1990	2000	2009
Population (millions)	791	980	1,260	1,650	2,520	5,270	6,060	6,800

Fit the data with a cubic spline. Estimate the population in 1975. Make a plot of the data points and the spline function.