92.272 Introduction to Programming with MATLAB
Curve Fitting Part II and Spline Interpolation

A. Curve Fitting

As we have seen, the polyfit command fits a polynomial function to a set of data points. However,
sometimes it is appropriate to use a function other than a polynomial.

The following types of functions are often used to model a data set.

e y = bz (power function)

y = be™® (exponential function)

y =mlIn(z) + b (logarithmic function)

oy (reciprocal function)

T mz+b
Note that y = b2™ = In(y) = In(b) + mIn(z), so a loglog plot of a set of data points obeying a
power law is a straight line.

y = be™ = In(y) = In(b) + mz, so a semilog plot (linear horizontal axis, logarithmic vertical axis)
of a set of data points obeying an exponential law is a straight line.

A semilog plot (logarithmic horizontal axis, linear vertical axis) of a set of data points obeying a
logarithmic law is a straight line.
1

v= mx + b
reciprocal law.

1
= — =mx +b, so a linear plot of 1/y vs. x is a straight line if the data obey a
Yy

Once you have chosen the type of function you want to use to model your data, you can use the
polyfit command to calculate the values of b and m. If you have a theoretical basis for choosing
a particular type of function to model your data, use that type of function. If you have no idea
what type of function to use, you can look at a loglog plot, two semilog plots, and a linear plot of
1/y vs. x to see if any of the graphs are close to a straight line. If one of the four graphs looks like
a line, use the corresponding function to model your data.

Here is an example. I obtained the data by measuring the temperature of water in a hot pot every
three minutes.

[0 369 12 15 18 21 24 27 30 33];
y [50.6 46.8 43.2 40.0 37.0 34.2 31.6 29.2 27.0 25.0 23.1 21.4];
subplot(2,2,1)

X

loglog(x,y)
subplot(2,2,2)
semilogy(x,y)
subplot(2,2,3)
semilogx(x,y)
subplot(2,2,4)
plot(x,1./y)

If the first graph looks like a line, you can use the command polyfit(log(x), log(y), 1) to
calculate the values of m and In(b).

If the second graph looks like a line, you can use the command polyfit(x, log(y), 1) to calculate
the values of m and In(b).

If the third graph looks like a line, you can use the command polyfit(log(x), y, 1) to calculate
the values of m and b.

If the fourth graph looks like a line, you can use the command polyfit(x, 1./y, 1) to calculate
the values of m and b.

. Spline Interpolation

If you have no reason to choose a functional model to fit a set of data but you want to use the
data to make predictions, you might want to use a curve that passes through all the data points.
As we have seen, you can always find a polynomial of degree n — 1 that passes through a set of n
data points, but this might not be a good idea because high-degree polynomials can oscillate quite
a bit. An alternative is to use a piecewise polynomial, also known as a spline. A popular choice is
a piecewise cubic function. The degree is high enough to provide a fair degree of smoothness but
not so high as to cause large oscillations.

The MATLAB command spline produces a cubic spline, given a set of data points as input. The
command ppval can be used to evaluate splines produced by the spline command. Here is an
example.

x_data = [-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1];
[0.3333 0.4324 0.5714 0.7619 1.0000 1.2308 1.3333 1.2308 1.0000];

y_data
pp = spline(x_data, y_data);
x_plot=linspace(-1, 1, 50);
y_plot = ppval(pp, x_plot);
plot(x_data, y_data, ’o’, x_plot, y_plot, ’-b’)

If you wanted to estimate a y value at an x value not among the given data, you can use the ppval
command. For example, to estimate the y value corresponding to z = 0.1 you can use the command

ppval(pp, 0.1)

. Alternate Interpolation Methods
The MATLAB command intper1l offers several interpolation options. Try these commands.
x = linspace(0, 2xpi, 11);

y = sin(x);

x_plot = linspace(0, 2xpi, 51);

y_plot = interpl(x, y, x_plot, ’linear’);
plot(x, y, ’0’, x_plot, y_plot, ’-b’)

The interpl command with the ’linear’ option produces a piecewise linear function that passes
through the data points given by the x and y arrays.

If you use ’spline’ instead of ’1linear’ you will generate a piecewise cubic interpolant, just like
the spline command generates. Try these commands:

x = linspace(0, 2*pi, 10);

y = sin(x);
x_plot = linspace(0, 2xpi, 25);
y_plot = interpl(x, y, x_plot, ’spline’);

plot(x, y, ’0’, x_plot, y_plot, ’-b’)

Practice Problems (from Gilat, MATLAB: An Introduction with Applications.)

1. Below are data showing how the stress concentration factor k in a stepped shaft depends on
the ratio of two shaft dimensions.

(a) Use a power function k = b(r/d)™ to model the relationship between k and r/d. Determine
the values of b and m that best fit the data.

(b) Plot the data points and the curve-fitted model.

(c) Use the model to predict the stress concentration factor for r/d = 0.04.

r/d | 0.3 | 0.26|0.22|0.18 | 0.14 | 0.1 | 0.06 | 0.02
k 1.18 1 1.19 |1 1.21 | 1.26 | 1.32 | 1.43 | 1.6 | 1.98

2. The population of the world for selected years from 1750 to 2009 is given in the following
table.

Year 1750 | 1800 | 1850 | 1900 | 1950 | 1990 | 2000 | 2009
Population (millions) || 791 | 980 | 1,260 | 1,650 | 2,520 | 5,270 | 6,060 | 6,800

Fit the data with a cubic spline. Estimate the population in 1975. Make a plot of the data
points and the spline function.

