
MATH.2720 Introduction to Programming with MATLAB

Curve Fitting Part II and Interpolation

A. Curve Fitting

As we have seen, the polyfit command fits a polynomial function to a set of data points. However,
sometimes it is appropriate to use a function other than a polynomial.

The following types of functions are often used to model a data set.

• y = bxm (power function)

• y = bemx (exponential function)

• y = m ln(x) + b (logarithmic function)

• y =
1

mx + b
(reciprocal function)

Note that y = bxm
⇒ ln(y) = ln(b) + m ln(x), so a loglog plot of a set of data points obeying a

power law is a straight line.

y = bemx
⇒ ln(y) = ln(b) + mx, so a semilog plot (linear horizontal axis, logarithmic vertical axis)

of a set of data points obeying an exponential law is a straight line.

A semilog plot (logarithmic horizontal axis, linear vertical axis) of a set of data points obeying a

logarithmic law is a straight line.

y =
1

mx + b
⇒

1

y
= mx + b, so a linear plot of 1/y vs. x is a straight line if the data obey a

reciprocal law.

Once you have chosen the type of function you want to use to model your data, you can use the

polyfit command to calculate the values of b and m. If you have a theoretical basis for choosing
a particular type of function to model your data, use that type of function. If you have no idea
what type of function to use, you can look at a loglog plot, two semilog plots, and a linear plot of

1/y vs. x to see if any of the graphs are close to a straight line. If one of the four graphs looks like
a line, use the corresponding function to model your data.

Here is an example. I obtained the data by measuring the temperature of water in a hot pot every
three minutes.

x = [0 3 6 9 12 15 18 21 24 27 30 33];

y = [50.6 46.8 43.2 40.0 37.0 34.2 31.6 29.2 27.0 25.0 23.1 21.4];

subplot(2,2,1)

loglog(x,y)

subplot(2,2,2)

semilogy(x,y)

subplot(2,2,3)

semilogx(x,y)

subplot(2,2,4)

plot(x,1./y)



If the first graph looks like a line, you can use the command p = polyfit(log(x), log(y), 1)

to calculate the values of m and ln(b). In this case, m=p(1) and b=exp(p(2)).

If the second graph looks like a line, you can use the command polyfit(x, log(y), 1) to calculate
the values of m and ln(b). In this case, m=p(1) and b=exp(p(2)).

If the third graph looks like a line, you can use the command polyfit(log(x), y, 1) to calculate

the values of m and b. In this case, m=p(1) and b=p(2).

If the fourth graph looks like a line, you can use the command polyfit(x, 1./y, 1) to calculate
the values of m and b. In this case, m=p(1) and b=p(2).

B. Spline Interpolation

If you have no reason to choose a functional model to fit a set of data but you want to use the

data to make predictions, you might want to use a curve that passes through all the data points.
As we have seen, you can always find a polynomial of degree n − 1 that passes through a set of n

data points, but this might not be a good idea because high-degree polynomials can oscillate quite
a bit. An alternative is to use a piecewise polynomial, also known as a spline. A popular choice is

a piecewise cubic function. The degree is high enough to provide a fair degree of smoothness but
not so high as to cause large oscillations.

The MATLAB command spline produces a cubic spline, given a set of data points as input. The

command ppval can be used to evaluate splines produced by the spline command. Here is an
example.

x_data = [-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1];

y_data = [0.3333 0.4324 0.5714 0.7619 1.0000 1.2308 1.3333 1.2308 1.0000];

pp = spline(x_data, y_data);

x_plot=linspace(-1, 1, 50);

y_plot = ppval(pp, x_plot);

plot(x_data, y_data, ’o’, x_plot, y_plot, ’-b’)

If you wanted to estimate a y value at an x value not among the given data, you can use the ppval

command. For example, to estimate the y value corresponding to x = 0.1 you can use the command

ppval(pp, 0.1)

C. Alternate Interpolation Methods

The MATLAB command interp1 offers several interpolation options. Try these commands.

x = linspace(0, 2*pi, 11);

y = sin(x);

x_plot = linspace(0, 2*pi, 51);

y_plot = interp1(x, y, x_plot, ’linear’);

plot(x, y, ’o’, x_plot, y_plot, ’-b’)

The interp1 command with the ’linear’ option produces a piecewise linear function that passes

through the data points given by the x and y arrays.

If you use ’spline’ instead of ’linear’ you will generate a piecewise cubic interpolant, just like

the spline command generates. Try these commands:



x = linspace(0, 2*pi, 10);

y = sin(x);

x_plot = linspace(0, 2*pi, 25);

y_plot = interp1(x, y, x_plot, ’spline’);

plot(x, y, ’o’, x_plot, y_plot, ’-b’)

Practice Problems (from Gilat, MATLAB: An Introduction with Applications.)

1. Below are data showing how the stress concentration factor k in a stepped shaft depends on
the ratio of two shaft dimensions.

(a) Use a power function k = b(r/d)m to model the relationship between k and r/d. Determine

the values of b and m that best fit the data.

(b) Plot the data points and the curve-fitted model.

(c) Use the model to predict the stress concentration factor for r/d = 0.04.

r/d 0.3 0.26 0.22 0.18 0.14 0.1 0.06 0.02

k 1.18 1.19 1.21 1.26 1.32 1.43 1.6 1.98

2. The population of the world for selected years from 1750 to 2009 is given in the following
table.

Year 1750 1800 1850 1900 1950 1990 2000 2009

Population (millions) 791 980 1,260 1,650 2,520 5,270 6,060 6,800

Fit the data with a cubic spline. Estimate the population in 1975. Make a plot of the data

points and the spline function.

Answers to Practice Problems

1a. m = -1.9897e-01, b = 9.0620e-01

1c. 1.7194e+00

2. 4.0986e+03

0 0.05 0.1 0.15 0.2 0.25 0.3

r/d

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

k

1750 1800 1850 1900 1950 2000 2050

year

0

1000

2000

3000

4000

5000

6000

7000

w
o
rl
d
 p

o
p
u
la

ti
o
n
 (

m
il
li
o
n
s
)


