
MATH.2720 Introduction to Programming with MATLAB

User-Defined Functions (aka Custom Functions)

A. User-Defined Functions

A MATLAB function file is similar to a script file in that it contains MATLAB code. Most function
files, however, require input and produce output, like a mathematical function. The first word on
the first line of a function file must be function This is followed by the name(s) of the output

variables, an = sign, the name of the function, and the name(s) of the input variables in parentheses.

Here is an example, taken from Programming in MATLAB by Knoesen, Amirtharajah, Vahid, and

Lysecky.

In the File menu on the MATLAB toolbar, click on New, then click on Function. A box will open
in the Editor window with the skeleton of a function file.

Edit the file so it contains the following lines.

function distance = LightningDistance(seconds)

% LightningDistance: Estimates distance of lightning strike based on

% seconds between observer seeing lightning strike and hearing thunder.

% Input: seconds -- Measured time between lightning strike and thunder.

% Output: distance -- Distance to lightning strike, in kilometers.

speedOfSound = 340.29; % Speed of sound in meters/sec at sea level

distance = (speedOfSound * seconds) / 1000; % / 1000 yields km

end

Save the file using the file name LightningDistance. In the command window, type the command

>>help LightningDistance

Now type the command

distKm = LightningDistance(10)

Please keep these rules in mind:

1. Never use the input command in a function file. Input should be passed in the

function call.

2. (Almost) never display output in a function file. Let the user who called the

function decide how to display the output.

B. Scope of Variables within Function Files

Variables used within a function file are known only within the function, not in other files or in
the command window. Similarly, variables defined in a script file or in the command window are

not known by any functions. One way to make a variable known everywhere is to use the global

command. Here is a simple example.

Create a function file containing the following lines

function yMax = max_height(v0)

%max_height calculates how high a ball rises given its initial velocity

%Input: v0 -- initial velocity of ball in m/s

%Output: yMax -- maximum height of ball

global g

yMax = v0.^2/(2*g);

end

In the command window, type the commands

>>global g

>>g = 9.81

>>ymax = max_height(40)

C. Anonymous Functions

It is possible to define a function within a script file, a function file, or the command window without

creating a separate function file. Functions defined in this way are called anonymous functions.

Here is an example of a script file in which an anonymous function is defined.

circleArea = @(r) pi*r^2;

r = input(’Enter the radius of a circle: ’);

area = circleArea(r);

fprintf(’The area of your circle is %6.2f\n’,area)

The first line of the script file defines a function named circleArea which has one input argument
(r) and one output (the area of a circle of radius r.) If you save this script file, do not save it

with the file name circleArea.

The command defining an anonymous function has the form
function_name = @ (list of input arguments) function_formula.

D. Function Functions

Some MATLAB functions require the name of another function as an input argument. For example,

the built-in MATLAB function fzero finds a root of a function, but you have to tell fzero what
function you want a root of. Try this example. First create the function file f.m defining the

function given by f(x) = x − cos(x):

function y = f(x)

y = x - cos(x);

end

In the command window, type the command

fzero(@f, 1)

This will calculate a root of the function f near x = 1. Notice that the first input argument
to fzero is the @ symbol followed directly by the function file name. (Exception to the rule: If

your function has been defined as an anonymous function, you don’t need the @ symbol before the
function name.)

E. Subfunctions (aka Local Functions)

It is possible to define more than one function within a single function file. If you do this, the first
function defined in the file is called the primary function and the others are called subfunctions.

Here is an example of a file containing multiple function definitions.

function [circ, area] = CircleMeasurements(radius)

%CircleMeasurements calculates the circumference and area of a circle of

%given radius

%Input: radius -- radius of circle

%Outputs: circ = circumference of circle

% area = area of circle

circ = Circumf(radius);

area = CircleArea(radius);

function perim = Circumf(r)

perim = 2*pi*r;

end

function area_of_circle = CircleArea(r)

area_of_circle = pi*r^2;

end

end

Try executing this command in the command window:

[c, a] = CircleMeasurements(1)

Practice Problems

1. Write a function file that takes the height of a person in inches as input and produces the
corresponding height in centimeters as output. (1 inch = 2.54 centimeters.) Test your function

with the input 65 inches.

2. Write a function file that takes the length and width of a rectangle as inputs and produces
the area and perimeter of the rectangle as outputs. Test your function using dimensions of 3

and 2.

3. Modify the script file example in the section on anonymous functions to calculate both cir-

cumference and area.

4. Use fzero to find a root of the function given by f(x) = tan(x)− x near x = 4.

5. Write a function file that calculates the volume and surface area of a sphere given the radius
of the sphere. Use subfunctions to calculate volume and surface area.

Answers to Practice Problems

1. 165.1

2. 6

4. 4.4934

