MATH. 2720 Introduction to Programming with MATLAB
 Logical Variables and Programming Structures, Part 2

Loops

Sometimes you need to execute the same or similar commands a number of times. Loops are good for that purpose. In case of emergency, you can terminate execution of a runaway program by hitting the Ctrl and c keys simultaneously.

1. for loops

Create and run a script file with the following commands to see an example of how a for loop works. This script asks for a positive integer n as input and sums the integers from 1 to n. (How could you do this without using a for loop?)

```
n = input('Enter a positive integer ');
err = 0;
if n ~= abs(round(n)) % What is the purpose of this if-else structure?
    err = 1;
else
intsum = 0;
for i=1:n
    intsum = intsum + i;
end % This ends the for loop
end % This ends the if-else structure
if err
disp('You must enter a positive integer.')
else
fprintf('The sum of the integers from 1 to %i is %i\n',n,intsum)
    % The %i format is for integers
end
```

The variables in a for loop can change in increments other than 1 . For example, if you just want to sum the even integers from 2 to n you can replace the for loop in the previous example with

```
for i=2:2:n
    intsum = intsum + i;
end
```

You can also put a for loop inside another for loop. Below is an example of a script file that uses nested for loops to generate a square matrix A with entries $A_{i j}=i+j$.

```
n = input('Enter a positive integer: ');
A = zeros(n);
for i = 1:n
    for j = 1:n
        A(i,j)=i+j;
    end
end
disp(A)
```


2. while loops

Create and run a script file with the following commands to see an example of how a while loop works. This script asks for a positive number a as input and estimates \sqrt{a} using Newton's Method. Newton's Method applied to the function $f(x)=x^{2}-a$ produces a sequence of numbers $x_{1}, x_{2}, x_{3}, \ldots$ that converges to a root of f. Starting with an initial estimate x_{1}, successive estimates are calculated using the formula $x_{n+1}=\frac{x_{n}}{2}+\frac{a}{2 x_{n}}$.

```
a = input('Enter a positive number: ');
err = 0;
tolerance = 1.e-3;
if a<=0
    err=1;
else
    current_est = a/2;
    new_est = current_est/2 + a/(2*current_est);
    while abs(new_est - current_est) > tolerance
            current_est = new_est;
            new_est = current_est/2 + a/(2*current_est);
    end % ends while loop
end % ends if structure
if err
    disp('You must enter a positive number')
else
    fprintf('The square root of %g is approximately %7.3f \n',a,new_est)
end
```

1. Create a script file using a for loop that asks the user to input an odd positive integer n and calculates the sum $1+3+5+\cdots+n$.
2. (Gilat, Chapter 6, problem 10) Fibonacci numbers are the numbers in a sequence in which the first two elements are 0 and 1 , and the value of each subsequent element is the sum of the previous two elements: $0,1,1,2,3,5,8,13, \ldots$
Create a script file that uses a for loop to generate an array named Fib containing the first 20 Fibonacci numbers.
3. Approximate the value of the sum $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ by computing a partial sum $\sum_{n=1}^{N} \frac{1}{n^{2}}$. Use a while loop that terminates when the difference between two successive approximations is less than 10^{-10} (1.e-10 in MATLAB notation).
Compare the value you obtain with the number $\pi^{2} / 6$.
