
MATH.2720 Introduction to Programming with MATLAB

Logical Variables and Programming Structures, Part 2

Loops

Sometimes you need to execute the same or similar commands a number of times. Loops are

good for that purpose. In case of emergency, you can terminate execution of a runaway

program by hitting the Ctrl and c keys simultaneously.

1. for loops

Create and run a script file with the following commands to see an example of how a for loop

works. This script asks for a positive integer n as input and sums the integers from 1 to n. (How
could you do this without using a for loop?)

n = input(’Enter a positive integer ’);

err = 0;

if n ~= abs(round(n)) % What is the purpose of this if-else structure?

err = 1;

else

intsum = 0;

for i=1:n

intsum = intsum + i;

end % This ends the for loop

end % This ends the if-else structure

if err

disp(’You must enter a positive integer.’)

else

fprintf(’The sum of the integers from 1 to %i is %i\n’,n,intsum)

% The %i format is for integers

end

The variables in a for loop can change in increments other than 1. For example, if you just want
to sum the even integers from 2 to n you can replace the for loop in the previous example with

for i=2:2:n

intsum = intsum + i;

end



You can also put a for loop inside another for loop. Below is an example of a script file that uses

nested for loops to generate a square matrix A with entries Aij = i + j.

n = input(’Enter a positive integer: ’);

A = zeros(n);

for i = 1:n

for j = 1:n

A(i,j)=i+j;

end

end

disp(A)

2. while loops

Create and run a script file with the following commands to see an example of how a while

loop works. This script asks for a positive number a as input and estimates
√

a using Newton’s
Method. Newton’s Method applied to the function f(x) = x2

− a produces a sequence of numbers

x1, x2, x3, . . . that converges to a root of f . Starting with an initial estimate x1, successive estimates

are calculated using the formula xn+1 =
xn

2
+

a

2xn

.

a = input(’Enter a positive number: ’);

err = 0;

tolerance = 1.e-3;

if a<=0

err=1;

else

current_est = a/2;

new_est = current_est/2 + a/(2*current_est);

while abs(new_est - current_est) > tolerance

current_est = new_est;

new_est = current_est/2 + a/(2*current_est);

end % ends while loop

end % ends if structure

if err

disp(’You must enter a positive number’)

else

fprintf(’The square root of %g is approximately %7.3f \n’,a,new_est)

end



Practice Problems.

1. Create a script file using a for loop that asks the user to input an odd positive integer n and
calculates the sum 1 + 3 + 5 + · · ·+ n.

2. (Gilat, Chapter 6, problem 10) Fibonacci numbers are the numbers in a sequence in which
the first two elements are 0 and 1, and the value of each subsequent element is the sum of

the previous two elements: 0, 1, 1, 2, 3, 5, 8, 13, ...
Create a script file that uses a for loop to generate an array named Fib containing the first

20 Fibonacci numbers.

3. Approximate the value of the sum
∞∑

n=1

1

n2
by computing a partial sum

N∑

n=1

1

n2
. Use a while

loop that terminates when the difference between two successive approximations is less than
10−10 (1.e-10 in MATLAB notation).

Compare the value you obtain with the number π2/6.


