MATH. 2720 Introduction to Programming with MATLAB Symbolic Utilities

Click on the "New Live Script" button on the toolbar. This will open a Live Editor window.

Algebra

1. MATLAB will factor polynomials. Enter the following commands in the Live Editor window, then click the Run key.
```
syms x y
factor(x^4 - 5*x^2 + 4)
```

2. MATLAB can solve single equations. Enter the following command in the Live Editor window, then click the Run key.
```
solve( {x^4 - 5*x^2 + 4 == 0} ) %Note the double equal sign
```

3. MATLAB can also solve systems of equations:
```
[x,y] = solve({2*x + y == 5, x + 2*y == 4})
```

4. MATLAB can simplify expressions.

Try these commands to simplify $\frac{x}{2 x+1}+\frac{1}{x}$ and $\cos ^{3}(x)+\cos (x) \sin ^{2}(x)$

```
clear
syms x
simplify(x/(2*x + 1) + 1/x)
simplify((cos(x))^3 + cos(x)*(sin(x))^2)
```


Calculus

MATLAB can find limits, derivatives, and integrals symbolically. Try the following commands to find $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}, \lim _{x \rightarrow \infty} e^{-x}, \frac{d}{d x}\left[x^{3}\right], \frac{d^{2}}{d x^{2}}\left[x^{3}\right], \int \frac{1}{x^{2}+1} d x$, and $\int_{0}^{1} \frac{x}{\left(x^{2}+1\right)^{3 / 2}} d x$, respectively.

```
limit(sin(x)/x, x, 0)
limit(exp(-x), x, inf) %inf means infinity
diff(x^3, x)
diff(x^3, x, 2) %The 2 means find the second derivative
int(1/( (x^2+1), x)
int(x/(x^2+1)^(3/2), 0, 1)
```


Differential Equations

MATLAB can even solve differential equations symbolically. Here are some examples:

1. To solve the d.e. $x^{2} y^{\prime}+2 x y=3 x^{2}$, use the commands
clear
syms $y(x)$
dsolve($\left.x \wedge 2 * \operatorname{diff}(\mathrm{y})+2 * x * y(x)==3 * x^{\wedge} 2\right)$
2. You can also solve initial value problems, such as $y^{\prime}=y(1-y), y(1)=1 / 2$:
```
dsolve(diff(y)==y(x)*(1-y(x)),y(0)==1/2)
```

3. Here is how to solve the second order d.e. $y^{\prime \prime}=y$:
```
Dy = diff(y);
dsolve(diff(Dy)==y(x))
```

4. You can name the solution of an initial value problem, and you can even calculate the value of the solution at any x :
Dy $=\operatorname{diff}(\mathrm{y})$;
$y=d s o l v e(\operatorname{diff}(\operatorname{Dy})+y(x)==0, y(0)==1, D y(0)==1)$
subs(y,pi/4) \%This evaluates the solution y at $x=p i / 4$

Practice Problems

1. Factor the polynomial $x^{3}-3 x^{2}+3 x-1$.
2. Find $\frac{d^{2}}{d x^{2}}[x \cosh (x)] \quad$ (MATLAB knows the hyperbolic functions.)
3. Evaluate $\int_{0}^{\infty} e^{-x} d x$
4. Solve the initial value problem $y^{\prime \prime}+2 y^{\prime}+5 y=20 \cos (x), y(0)=2, y^{\prime}(0)=0$

Answers to Practice Problems

1. $(x-1)^{3}$
2. $2 \sinh (x)+x \cosh (x)$
3. 1
4. $4 \cos (x)+2 \sin (x)-2 e^{-x}\left(2 \cos (x)^{2}-1\right)-4 e^{-x} \cos (x) \sin (x)$
or $4 \cos (x)+2 \sin (x)-2 e^{-x} \cos (2 x)-2 e^{-x} \sin (2 x)$
