MATH. 2720 Introduction to Programming with MATLAB Spring 2017

Final Exam

Due 5PM May 5

This is an exam, so the work you submit must be your own.

Thanks to Dr. Colby and Dr. Gamache for the information they provided.

Please email me (stephen_pennell@uml.edu) your function files regula_falsi.m, mixing_ratio.m, and Delta_q.m; your script file wet_bulb.m; and your answers to part 2 and the last question in part 5 .

Part 1. (40 pts.) Write a function file called regula_falsi.m that implements the Regula Falsi Method described in Appendix A and discussed in class.

- There should be 4 inputs to regula_falsi.m: the name of the (continuous) function whose root you are looking for, 2 numbers x_{1} and x_{2} (with $x_{1}<x_{2}$), and the error tolerance. The values of the function at x_{1} and x_{2} should have opposite signs, guaranteeing that the interval $\left[x_{1}, x_{2}\right]$ contains a root of the function.
- There should be 1 output from regula_falsi.m: an estimate r of the value of a root of the given function. The value of the function at r should be no greater than the error tolerance in absolute value.
- regula_falsi.m should check to make sure that the values of the function at x_{1} and x_{2} have opposite signs. If this is not the case, the output of regula_falsi.m should be NaN .
- Be sure to include comments describing the function and its inputs and output.

Part 2. (5 pts.) Test your function regula_falsi.m on the function $f(x)=x^{2}-2$ on the interval $[0,2]$ with tolerance $\epsilon=0.001$.

Part 3. (15 pts.) Write a function file called mixing_ratio.m that calculates the mixing ratio for air as described in Appendix B.

- There should be 2 inputs to mixing_ratio.m: temperature T and pressure p.
- There should be 1 output from mixing_ratio.m: the value of the mixing ratio w for the given values of T and p.
- Be sure to include comments describing the function and its inputs and output.

Part 4. (15 pts.) Write a function file called Delta_q.m that calculates the value of the function $\Delta q(T)$ defined in Appendix C.

- There should be 1 input to Delta_q.m: the value of T.
- There should be 1 output from Delta_q.m: the value of $\Delta q(T)$.
- Declare the parameters T_{a}, T_{d}, and p_{a} to be global.
- Be sure to include comments describing the function and its inputs and output.

Part 5. (25 pts.) Write a script file called wet_bulb.m that calculates wetbulb temperature by using your function regula_falsi.m to find the root of $\Delta q(T)$. Use T_{d} and T_{a} as the endpoints of the interval containing the root. Use tolerance $\epsilon=0.001$.

- Declare the parameters T_{a}, T_{d}, and p_{a} to be global.
- Ask the user to input the air temperature $T_{a}\left(\right.$ in $\left.{ }^{\circ} \mathrm{F}\right)$, the dew point $T_{d}\left(\right.$ in $\left.{ }^{\circ} \mathrm{F}\right)$, and the atmospheric pressure p_{a} (in hectopascals).
- Convert T_{a} and T_{d} to degrees K.
- Display the calculated value of the wetbulb temperature in ${ }^{\circ} \mathrm{F}$.
- Be sure to include comments describing the script file.
- Test your code using $T_{a}=79.5^{\circ} \mathrm{F}, T_{d}=55.2^{\circ} \mathrm{F}$, and $p_{a}=1013.6 \mathrm{hPa}$. (UMass Lowell data from July 10, 2008, provided by Dr. Colby.) You should get a value of $64.1^{\circ} \mathrm{F}$.

Appendix A - The Regula Falsi Method

The Regula Falsi Method is an iterative method that produces a sequence of increasingly accurate approximations to the root of a function.

Input: A continuous function f, an interval $\left[x_{1}, x_{2}\right]$ with the property that $f\left(x_{1}\right)$ and $f\left(x_{2}\right)$ have opposite signs, and the error tolerance ϵ. (The condition that $f\left(x_{1}\right)$ and $f\left(x_{2}\right)$ have opposite signs guarantees that f has at least one root in the interval $\left[x_{1}, x_{2}\right]$.)

Output: An approximate value of a root of f in the interval $\left[x_{1}, x_{2}\right]$.
How the method works: At each step, define $x_{3}=\frac{f\left(x_{2}\right) x_{1}-f\left(x_{1}\right) x_{2}}{f\left(x_{2}\right)-f\left(x_{1}\right)}$. If $\left|f\left(x_{3}\right)\right|<\epsilon$ you are finished, and x_{3} is the estimate of the root. Otherwise, set $x_{2}=x_{3}$ if $f\left(x_{1}\right)$ and $f\left(x_{3}\right)$ have opposite signs, or set $x_{1}=x_{3}$ if $f\left(x_{1}\right)$ and $f\left(x_{3}\right)$ have the same sign. The new interval [x_{1}, x_{2}] contains a root of f and is smaller than the old $\left[x_{1}, x_{2}\right]$. Repeat these steps until you find a value of x_{3} for which $\left|f\left(x_{3}\right)\right|<\epsilon$.

Example: We will estimate the value of $\sqrt{2}$ by using the bisection search method to find a root of the function given by $f(x)=x^{2}-2$ on the interval [0,2] using tolerance $\epsilon=0.001$. Note that $f(0) f(2)=(-2)(2)<0$, so $f(0)$ and $f(2)$ have opposite signs.

Iteration 1. The interval $\left[x_{1}, x_{2}\right]=[0,2]$ is known to contain a root of f.
$x_{3}=\frac{f(2)(0)-f(0)(2)}{f(2)-f(0)}=\frac{(2)(0)-(-2)(2)}{2-(-2)}=1 .|f(1)|=|-1|=1 \geq \epsilon$ so we continue. $f\left(x_{1}\right)$ and $f\left(x_{3}\right)$ have the same sign (both negative), so we redefine x_{1} to have the value 1 and leave x_{2} as 2 .

Iteration 2. The interval $\left[x_{1}, x_{2}\right]=[1,2]$ is known to contain a root of f.
$x_{3}=\frac{f(2)(1)-f(1)(2)}{f(2)-f(1)}=\frac{(2)(1)-(-1)(2)}{2-(-1)}=4 / 3 .|f(4 / 3)|=|-2 / 9|=2 / 9 \geq \epsilon$ so we continue. $f\left(x_{1}\right)$ and $f\left(x_{3}\right)$ have the same sign (both negative), so we redefine x_{1} to have the value $4 / 3$ and leave x_{2} as 2 .

Iteration 3. The interval $\left[x_{1}, x_{2}\right]=[4 / 3,2]$ is known to contain a root of f.
$x_{3}=\frac{f(2)(4 / 3)-f(4 / 3)(2)}{f(2)-f(4 / 3)}=\frac{(2)(4 / 3)-(-2 / 9)(2)}{2-(-2 / 9)}=7 / 5 .|f(7 / 5)|=|-1 / 25|=1 / 25 \geq \epsilon$ so
we continue. $f\left(x_{1}\right)$ and $f\left(x_{3}\right)$ have the same sign (both negative), so we redefine x_{1} to have the value $7 / 5$ and leave x_{2} as 2 .

This process continues until $\left|f\left(x_{3}\right)\right|$ drops below ϵ.

Appendix B - Mixing Ratio

The mixing ratio w is the ratio of the mass of water vapor to the mass of dry air. The mixing ratio corresponding to air temperature T and air pressure p is calculated as follows:

$$
w=\frac{0.62197 p_{v}}{p-p_{v}}
$$

where p_{v} denotes vapor pressure. The vapor pressure is calculated in terms of air temperature T as follows:

$$
p_{v}=10^{b}
$$

where

$$
\begin{aligned}
p_{0} & =1013.246 \\
T_{0} & =373.16 \\
a_{1} & =11.344\left(1-T / T_{0}\right) \\
a_{2} & =-3.49149\left(T_{0} / T-1\right) \\
b_{1} & =-7.90298\left(T_{0} / T-1\right) \\
b_{2} & =5.02808 \log _{10}\left(T_{0} / T\right) \\
b_{3} & =-1.3816\left(10^{a_{1}}-1\right) / 10^{7} \\
b_{4} & =8.1328\left(10^{a_{2}}-1\right) / 10^{3} \\
b_{5} & =\log _{10}\left(p_{0}\right) \text { and } \\
b & =b_{1}+b_{2}+b_{3}+b_{4}+b_{5}
\end{aligned}
$$

Appendix C - Wetbulb Temperature

As explained by Dr. Colby, wetbulb temperature is the temperature a parcel of air can be cooled to by evaporating water into it at constant pressure. Given the air temperature $T_{a}(\mathrm{~K})$, the dew point $T_{d}(\mathrm{~K})$, and the atmospheric pressure p_{a} (hectopascals), the wetbulb temperature can be calculated by finding the root of the function Δq given by

$$
\Delta q(T)=\frac{L\left(w_{2}-w_{1}\right)}{1+w_{2}}-c_{p}\left(T_{a}-T\right)\left(1+0.8 w_{2}\right)
$$

where $c_{p}=1005 \mathrm{~J} /(\mathrm{kg} \mathrm{K})$ is the heat capacity of water vapor; $L=2.501 \times 10^{6} \mathrm{~J} / \mathrm{kg}$ is the latent heat of water vapor at $0^{\circ} \mathrm{C} ; w_{1}$ denotes the mixing ratio corresponding to temperature T_{d} and pressure p_{a}, and w_{2} denotes the mixing ratio corresponding to temperature T and pressure p_{a}. Use your function mixing_ratio to calculate w_{1} and w_{2}. The units of T are degrees K.

