Final Exam

Due 5PM May 5

This is an exam, so the work you submit must be your own.

Thanks to Dr. Colby and Dr. Gamache for the information they provided.

Please email me (stephen_pennell@uml.edu) your function files regula_falsi.m, mixing_ratio.m, and Delta_q.m; your script file wet_bulb.m; and your answers to part 2 and the last question in part 5.

- Part 1. (40 pts.) Write a function file called regula_falsi.m that implements the Regula Falsi Method described in Appendix A and discussed in class.
 - There should be 4 inputs to regula_falsi.m: the name of the (continuous) function whose root you are looking for, 2 numbers x_1 and x_2 (with $x_1 < x_2$), and the error tolerance. The values of the function at x_1 and x_2 should have opposite signs, guaranteeing that the interval $[x_1, x_2]$ contains a root of the function.
 - There should be 1 output from $regula_falsi.m$: an estimate r of the value of a root of the given function. The value of the function at r should be no greater than the error tolerance in absolute value.
 - regula_falsi.m should check to make sure that the values of the function at x_1 and x_2 have opposite signs. If this is not the case, the output of regula_falsi.m should be NaN.
 - Be sure to include comments describing the function and its inputs and output.
- **Part 2.** (5 pts.) Test your function regula_falsi.m on the function $f(x) = x^2 2$ on the interval [0, 2] with tolerance $\epsilon = 0.001$.
- Part 3. (15 pts.) Write a function file called mixing_ratio.m that calculates the mixing ratio for air as described in Appendix B.
 - There should be 2 inputs to mixing_ratio.m: temperature T and pressure p.
 - There should be 1 output from mixing_ratio.m: the value of the mixing ratio w for the given values of T and p.
 - Be sure to include comments describing the function and its inputs and output.

- **Part 4.** (15 pts.) Write a function file called Delta_q.m that calculates the value of the function $\Delta q(T)$ defined in Appendix C.
 - There should be 1 input to Delta_q.m: the value of T.
 - There should be 1 output from Delta_q.m: the value of $\Delta q(T)$.
 - Declare the parameters T_a , T_d , and p_a to be global.
 - Be sure to include comments describing the function and its inputs and output.
- **Part 5.** (25 pts.) Write a script file called wet_bulb.m that calculates wetbulb temperature by using your function regula_falsi.m to find the root of $\Delta q(T)$. Use T_d and T_a as the endpoints of the interval containing the root. Use tolerance $\epsilon = 0.001$.
 - Declare the parameters T_a , T_d , and p_a to be global.
 - Ask the user to input the air temperature T_a (in °F), the dew point T_d (in °F), and the atmospheric pressure p_a (in hectopascals).
 - Convert T_a and T_d to degrees K.
 - Display the calculated value of the wetbulb temperature in °F.
 - Be sure to include comments describing the script file.
 - Test your code using $T_a = 79.5^{\circ}$ F, $T_d = 55.2^{\circ}$ F, and $p_a = 1013.6$ hPa. (UMass Lowell data from July 10, 2008, provided by Dr. Colby.) You should get a value of 64.1°F.

Appendix A - The Regula Falsi Method

The Regula Falsi Method is an iterative method that produces a sequence of increasingly accurate approximations to the root of a function.

Input: A continuous function f, an interval $[x_1, x_2]$ with the property that $f(x_1)$ and $f(x_2)$ have opposite signs, and the error tolerance ϵ . (The condition that $f(x_1)$ and $f(x_2)$ have opposite signs guarantees that f has at least one root in the interval $[x_1, x_2]$.)

Output: An approximate value of a root of f in the interval $[x_1, x_2]$.

How the method works: At each step, define $x_3 = \frac{f(x_2)x_1 - f(x_1)x_2}{f(x_2) - f(x_1)}$. If $|f(x_3)| < \epsilon$ you are finished, and x_3 is the estimate of the root. Otherwise, set $x_2 = x_3$ if $f(x_1)$ and $f(x_3)$ have opposite signs, or set $x_1 = x_3$ if $f(x_1)$ and $f(x_3)$ have the same sign. The new interval $[x_1, x_2]$ contains a root of f and is smaller than the old $[x_1, x_2]$. Repeat these steps until you find a value of x_3 for which $|f(x_3)| < \epsilon$.

Example: We will estimate the value of $\sqrt{2}$ by using the bisection search method to find a root of the function given by $f(x) = x^2 - 2$ on the interval [0, 2] using tolerance $\epsilon = 0.001$. Note that f(0)f(2) = (-2)(2) < 0, so f(0) and f(2) have opposite signs.

Iteration 1. The interval $[x_1, x_2] = [0, 2]$ is known to contain a root of f. $x_3 = \frac{f(2)(0) - f(0)(2)}{f(2) - f(0)} = \frac{(2)(0) - (-2)(2)}{2 - (-2)} = 1.$ $|f(1)| = |-1| = 1 \ge \epsilon$ so we continue. $f(x_1)$ and $f(x_3)$ have the same sign (both negative), so we redefine x_1 to have the value 1 and leave x_2 as 2.

Iteration 2. The interval $[x_1, x_2] = [1, 2]$ is known to contain a root of f. $x_3 = \frac{f(2)(1) - f(1)(2)}{f(2) - f(1)} = \frac{(2)(1) - (-1)(2)}{2 - (-1)} = 4/3.$ $|f(4/3)| = |-2/9| = 2/9 \ge \epsilon$ so we continue. $f(x_1)$ and $f(x_3)$ have the same sign (both negative), so we redefine x_1 to have the value 4/3 and leave x_2 as 2.

Iteration 3. The interval $[x_1, x_2] = [4/3, 2]$ is known to contain a root of f. $x_3 = \frac{f(2)(4/3) - f(4/3)(2)}{f(2) - f(4/3)} = \frac{(2)(4/3) - (-2/9)(2)}{2 - (-2/9)} = 7/5. |f(7/5)| = |-1/25| = 1/25 \ge \epsilon$ so we continue. $f(x_1)$ and $f(x_3)$ have the same sign (both negative), so we redefine x_1 to have the value 7/5 and leave x_2 as 2.

This process continues until $|f(x_3)|$ drops below ϵ .

The mixing ratio w is the ratio of the mass of water vapor to the mass of dry air. The mixing ratio corresponding to air temperature T and air pressure p is calculated as follows:

$$w = \frac{0.62197 \ p_v}{p - p_v}$$

where p_v denotes vapor pressure. The vapor pressure is calculated in terms of air temperature T as follows:

$$p_v = 10^b$$

where

$$p_{0} = 1013.246$$

$$T_{0} = 373.16$$

$$a_{1} = 11.344 (1 - T/T_{0})$$

$$a_{2} = -3.49149 (T_{0}/T - 1)$$

$$b_{1} = -7.90298 (T_{0}/T - 1)$$

$$b_{2} = 5.02808 \log_{10} (T_{0}/T)$$

$$b_{3} = -1.3816 (10^{a_{1}} - 1) / 10^{7}$$

$$b_{4} = 8.1328 (10^{a_{2}} - 1) / 10^{3}$$

$$b_{5} = \log_{10}(p_{0}) \text{ and}$$

$$b = b_{1} + b_{2} + b_{3} + b_{4} + b_{5}$$

Appendix C - Wetbulb Temperature

As explained by Dr. Colby, wetbulb temperature is the temperature a parcel of air can be cooled to by evaporating water into it at constant pressure. Given the air temperature T_a (K), the dew point T_d (K), and the atmospheric pressure p_a (hectopascals), the wetbulb temperature can be calculated by finding the root of the function Δq given by

$$\Delta q(T) = \frac{L(w_2 - w_1)}{1 + w_2} - c_p (T_a - T) (1 + 0.8w_2)$$

where $c_p = 1005 \text{ J/(kg K)}$ is the heat capacity of water vapor; $L = 2.501 \times 10^6 \text{ J/kg}$ is the latent heat of water vapor at 0°C; w_1 denotes the mixing ratio corresponding to temperature T_d and pressure p_a , and w_2 denotes the mixing ratio corresponding to temperature T and pressure p_a . Use your function mixing_ratio to calculate w_1 and w_2 . The units of Tare degrees K.