Please email me a script file containing the commands you used to answer these questions at stephen_pennell@uml.edu.

1. Let

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 4 \\
3 & 4 & 4
\end{array}\right]
$$

a) Find the determinant of A.
b) Find A^{-1}.
c) Solve the system

$$
\begin{aligned}
x+2 y+3 z & =2 \\
2 x+3 y+4 z & =2 \\
3 x+4 y+4 z & =1
\end{aligned}
$$

2. Use MATLAB to graph $y=\frac{\sin (2 \pi x)}{1+x^{2}}, y=\frac{1}{1+x^{2}}$, and $y=-\frac{1}{1+x^{2}}$ on the same set of axes for $-1 \leq x \leq 1$.
Please use the following formatting instructions.

- Draw the graph of $y=\frac{\sin (2 \pi x)}{1+x^{2}}$ using a solid blue line, draw the graph of $\frac{1}{1+x^{2}}$ using a dashed red line, and draw the graph of $y=-\frac{1}{1+x^{2}}$ using a dashed green line.
- Create a legend to indicate which curve is which. The only variables in the problem are x and y. Don't use other letters in your legend.
- Be sure to label your axes. The only variables in the problem are x and y. Don't use other letters in your axis labels.
- Use enough points so your graphs look like smooth curves.

3. A cycloid is specified by the parametric equations $x=r(t-\sin (t)), y=r(1-\cos (t))$.

Draw a cycloid with $r=1.5$ and $0 \leq t \leq 8 \pi$. Use the axis command to make the x axis run from 0 to 40 and the y axis run from 0 to 10 .
4. Generate a figure with a 1×2 array of windows. In one window draw a loglog plot of the function $C(\omega)=\frac{1}{\sqrt{1+\omega^{2}}}$ for $10^{-2} \leq \omega \leq 10^{3}$, and in the other window draw a plot of $C(\omega)$ with the horizontal axis scaled logarithmically and the vertical axis scaled linearly. Be sure to label the axes. (The string '\omega' will produce the Greek lower case letter ω.)
5. Draw a polar plot of $r=1+\sin (\theta)$ for $0 \leq \theta \leq 2 \pi$.
6. The pressure (in $\mathrm{N} / \mathrm{m}^{2}$) of one mole of an ideal gas occupying a volume of $1 \mathrm{~m}^{3}$ is given by $p=8.314 T$, where T is the temperature in degrees Kelvin. The volume (in m^{3}) of one mole of an ideal gas at a pressure of $10^{5} \mathrm{~N} / \mathrm{m}^{2}$ is given by $V=10^{5} /(8.314 T)$. Use the plotyy command to graph p and V as functions of T for $300 \leq T \leq 400$. Label the horizontal axis and both vertical axes. Include the units in your axis labels.

